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Pulse electron paramagnetic resonance imaging (Pulse EPRI) is a robust method for noninvasively mea-
suring local oxygen concentrations in vivo. For 3D tomographic EPRI, the most commonly used recon-
struction algorithm is filtered back projection (FBP), in which the parabolic filtration process strongly
influences image quality. In this work, we designed and compared 7 parabolic filtration methods to
reconstruct both simulated and real phantoms. To evaluate these methods, we designed 3 error criteria
and 1 spatial resolution criterion. It was determined that the 2 point derivative filtration method and the
two-ramp-filter method have unavoidable negative effects resulting in diminished spatial resolution and
increased artifacts respectively. For the noiseless phantom the rectangular-window parabolic filtration
method and sinc-window parabolic filtration method were found to be optimal, providing high spatial
resolution and small errors. In the presence of noise, the 3 point derivative method and Hamming-win-
dow parabolic filtration method resulted in the best compromise between low image noise and high spa-
tial resolution. The 3 point derivative method is faster than Hamming-window parabolic filtration
method, so we conclude that the 3 point derivative method is optimal for 3D FBP.

� 2014 Published by Elsevier Inc.
1. Introduction

Electron paramagnetic resonance imaging (EPRI) is a technique
that can measure, in vivo, the spatial distribution of paramagnetic
spin probes [1]. EPRI spectroscopic or relaxation images of these
water soluble probes in vivo have demonstrated a high sensitivity
to various physiologic parameters [2]. Different spin probes have
been designed to report on specific physiology [3]. EPRI can mea-
sure the distribution of endogenous or introduced exogenous para-
magnetic species, tissue redox status, pH, and microviscosity, as
well as oxygen concentration (pO2) [4]. Local pO2 has been found
to have a number of important prognostic implications for the
treatment of cancer and is therefore a very important physiologic
parameter to measure. Low pO2 (hypoxia) has been found to
increase cancer cell resistance to radiation therapy. The ability to
provide images of local pO2 distributions therefore can aid in the
determination of appropriate radiation doses to different regions
of a tumor, based on the spatial pO2 distribution provided by EPRI
[5].
Two main methods are used for ERPI: pulsed EPRI and continu-
ous wave (CW) EPRI [6]. If the relaxation time of the electron spin
system for a given spin probe is long enough to collect the EPR sig-
nal (e.g., for trityl spin probes), pulsed EPRI is the preferred method
[7]. However, if the relaxation time is restrictively short (e.g., for
nitroxide spin probes), it becomes very difficult to collect the EPR
signal due to sampling speed limitations for the A/D (analogue to
digital) converter. In this case, CW EPRI is the preferred method
[8]. For CW EPRI, the EPR signal is an absorption signal varying
according to the swept magnetic field strength, thereby alleviating
the sampling speed limitations by utilizing a comparatively slow
magnetic field sweep rate [9]. For future biomedical applications,
more rapid imaging or even real time imaging may be necessary.
Pulse pO2 images are acquired as a set of 3D amplitude images,
each of them with different pulse sequence parameters [6]. For
3D EPRI, the classical image reconstruction algorithm is the 3D fil-
tered back projection (FBP) algorithm [10–13], in which a parabolic
filter is used to eliminate the wedge effect [14]. This filter is anal-
ogous to the ramp filter that plays an important role in the 2D FBP
algorithm [14] widely used in X-ray parallel beam Computed
Tomography (CT).

Different parabolic filtration methods provide different levels of
image precision and spatial resolution. In addition, each filtration
method has a different sensitivity to noise. If a high spatial
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resolution image is necessary, the high frequency information of
the object must be retained. However, noise is tends to be mostly
concentrated in the high frequency range so that the high fre-
quency information content of the object and the high frequency
noise overlap. It is essentially impossible to completely extract
the useful signal from noise-contaminated spatial projections.
Clearly, a compromise between low noise and high spatial resolu-
tion is unavoidable. Similarly, there is no perfect parabolic filtra-
tion method. Our main goal is to determine an optimal parabolic
filtration method that provides an acceptable compromise
between spatial resolution and noise level under certain
conditions.

In this paper, we analyze the characteristics of the parabolic fil-
ter in Section 2, design three categories of parabolic filtration
approaches and seven specific methods in Section 3, compare these
seven filtration methods using simulation and real experiments in
Section 4, and draw conclusions from our results in Section 5.

2. The parabolic filter in the 3D FBP algorithm

2.1. 3D FBP algorithm

The 3D FBP formula is based on the 3D inverse Radon transform
[15]. Without derivation, the 3D FBP algorithm is shown in Eqs.
(1)–(5) as described in [15].

f ðx; y; zÞ ¼
Z p

2

0

Z 2p

0
gðt;u; hÞ sin hdudh ð1Þ

where

t ¼ ðx; y; zÞ � ðcos u sin h; sinu sin h; cos hÞ
¼ x cos u sin hþ y sinu sin hþ z cos h ð2Þ

gðt;u; hÞ ¼ pðt;u; hÞ � hðtÞ ð3Þ

hðtÞ ¼ F�1fx2g ¼
Z þ1

�1
x2ej2pxtdx ð4Þ

pðt;u; hÞ ¼
ZZZ þ1

�1
f ðx; y; zÞdðx cos u sin hþ y sin u sin h

þ z cos h� tÞdxdydz ð5Þ

In Eqs. (1)–(5), f(x, y, z) represents a 3D object, p(t, u, h) is a 1D
spatial projection of the object at the angle (u, h), g(t, u, h) is the
filtered projection, * denotes convolution, and h(t) is the unit
Fig. 1. The spatial projection diagram of 3D FBP algorithm.
impulse response of the parabolic filter. In Eq. (2), t is the projecting
address of a point (x, y, z) for a particular projection at the angle
(u, h). In Eq. (4), F�1f�g represents the inverse Fourier transform
(FT). A graphical representation of a spatial projection as defined
above is shown in Fig. 1.

2.2. The parabola filter

From the view of signal processing, every projection signal
input to the reconstruction process can be considered to individu-
ally pass through a parabolic filter, whose frequency response is
shown in Eq. (6). The system block diagram is shown in Fig. 2a.

HðxÞ ¼ x2; x 2 R ð6Þ

Z þ1

�1
jHðxÞjdx! þ1 ð7Þ

According to the FT theory, the FT and its inversion exist only
when the signal and its frequency spectrum are absolutely integra-
ble. However, from Eq. (7), we can see that the frequency response
of the parabolic filter is not absolutely integrable, and the parabolic
filter therefore cannot be implemented physically.

A real projection is always band-limited, so we can add a win-
dow onto the frequency response of the parabolic filter to get a unit
impulse response (UIR).

If the sampling interval for the spatial projection signal is d, the
highest frequency contained in the signal is 1

2d. The simplest
method for adding a window then is adding a rectangular window
whose bandwidth is 1

2d on the parabola. The rectangular window
function is shown in Eq. (8).

WrectðxÞ ¼
1 x 2 � 1

2d ;
1

2d

� �
0 otherwise

(
ð8Þ

From the inverse FT, we obtain the UIR:

hðtÞ ¼
Z þ1

�1
x2WrectðxÞej2pxtdx ¼

Z þ 1
2d

� 1
2d

x2ej2pxtdx

¼ 1

4ptd2 sin
pt
d
þ 1

2p2t2d
cos

pt
d
� 1

2p3t3 sin
pt
d

ð9Þ

Letting t = nd, we obtain the discrete UIR shown in Eq. (10).

hðnÞ ¼

1
12d3 n ¼ 0

� 1
2p2n2d3 n–0 and is odd

1
2p2n2d3 n–0 and is even

8>>><
>>>:

ð10Þ

If we let d = 1, we obtain a specific h(n) and can calculate its fre-
quency response using Discrete Fourier Transform (DFT), shown in
Fig. 3a and b.

From Fig. 3a and b, we can summarize some characteristics of
the parabolic filter:

(1) The parabolic filter is a special case of a high-pass filter. The
frequency response increases from low frequency to high
frequency proportional to x2. This means that the high fre-
quency noise will be highly amplified, causing 3D FBP to be a
noise-sensitive algorithm. For image reconstruction, it is
desirable to reduce the noise as much as possible.

(2) The phase response of the parabola filter is zero, i.e. the filter
is a zero-phase filter. This means that the support of the fil-
tered projection and the support of the projection should be
the same.

(3) The UIR of the parabolic filter is real and symmetric, while
its frequency response is positive, real, and symmetric.



Fig. 2. Three system block diagrams of parabolic filtration process. (a) Describes the continuous parabolic filter, which can be implemented using two ramp filters, shown in
(b), which has a discrete form, shown in (c).
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Fig. 3. The unit impulse response of the rectangular-window parabolic filter (a) and its frequency response (b), d = 1. (c and d) are the corresponding figures for sinc-window
parabolic filter and (e and f) are for Hamming window parabolic filter.
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(4) The UIR of the parabolic filter consists of a main lobe and
infinite symmetric side lobes of decreasing amplitude. The
three central points of the UIR are crucially important, so
no window should be added to them so as to avoid lowering
the values of the three central points unreasonably.

(5) The UIR exhibits an oscillatory Gibbs effect. To reduce this
effect, a smoother window can be used to cover the fre-
quency response as opposed to the rectangular window.
For example, a sinc window or Hamming window can be
used to reduce this effect [14].

3. Three types of filtration

Using different techniques to add a window, physically feasible
filters can be constructed. Therefore, the first type of filtration
approach is to use different window-adding techniques.

The relation between parabolic filtration and the second deriv-
ative suggests that a second derivative is another approach to
filtration.

In the CT field, many well-developed implementation tech-
niques exist for the ramp filter |x| [14]. Noting that there is a rela-
tion between the ramp filter and the parabolic filter, specifically
x2 = |x| � |x|, parabolic filtration can be implemented by applying
a ramp filtration twice. This is the third approach to filtration.

3.1. Direct parabolic filtration

As discussed above, adding a window will allow obtaining UIR
of the parabolic filter. The implementation process then becomes
a linear convolution process. One implementation method is to cal-
culate the linear convolution directly. The other option is to imple-
ment linear convolution by using Fast Fourier Transform (FFT) [16].

Now, if the discrete spatial projection signal is
p(n), n 2 [0, N � 1], assuming that we have obtained a UIR, h(n),
the output signal, g(n), can be calculated using Eq. (11).

gðnÞ ¼ d� pðnÞ � hðnÞ ¼ d
XN�1

m¼0

pðmÞhðn�mÞ ð11Þ

The parabolic filer is a zero-phase filter and therefore the
domain of the output signal should be [0, N � 1] as well.

Expanding Eq. (11), gives Eq. (12).

gð0Þ¼ d½pð0Þhð0Þþpð1Þhð�1Þþpð2Þhð�2Þþ �� �þpðN�1Þhð�ðN�1ÞÞ�
� � � � � � � � � � � �
gðN�1Þ¼ d½pð0ÞhðN�1Þþpð1ÞhðN�2Þþpð2ÞhðN�3Þþ �� �pðN�1Þhð0Þ�

8><
>:

ð12Þ

From Eq. (12), we can see that the definition domain of the UIR, h(n),
should be [�(N � 1), (N � 1)]. This formulates the important length
selection theorem for parabolic filtration.

Theorem 1. If the length of the spatial projection is N points, the
length of the UIR of the parabolic filter will be 2N � 1 and the
definition domain of the UIR will be [�(N � 1), (N � 1)].

In summary, the design and implementation steps of the direct
parabolic filtration are:

(1) design a window in order to band-limit the parabolic filter.
For example, by defining a rectangular window using Eq. (8),

(2) add the window to the frequency response of the parabolic
filter,

(3) calculate the continuous UIR of the filter using an inverse FT,
e.g., Eq. (9),

(4) find the discrete UIR of the filter by sampling the continuous
UIR using the defined sampling interval, e.g., Eq. (10),
(5) select the definition domain for the UIR according to Theo-
rem 1, thus providing a finite impulse response (FIR) filter,
and

(6) convolve the spatial projection signal and the UIR to obtain
the filtered projection (the convolution process can also be
implemented using the FFT algorithm).

3.2. Second derivative approach

According to the properties of the Fourier transform, one
obtains

F dp
dt
ðtÞ

� �
¼ j2pxPðxÞ ð13Þ

where Ff�g means the Fourier transform and P(x) is the frequency
spectrum of the signal p(t).

Thus, one obtains

F d2p

dt2 ðtÞ
( )

¼ j2px � j2px � PðxÞ ¼ �4p2x2 � PðxÞ ð14Þ

Therefore, the second parabolic filtration approach can be
defined:

gðtÞ ¼ � 1
4p2

d2p

dt2 ðtÞ ð15Þ

Eq. (15) implies that parabolic filtration can be implemented by
using a weighted second derivative.

In numerical analysis theory, there are many numerical differ-
entiation methods [17]. The second derivative can be calculated
by applying the first derivative twice. Here, we present three first
derivative calculation methods, which are shown in Eqs. (16)–
(18) respectively.

p0ð0Þ ¼ pð1Þ�pð0Þ
d

p0ð1Þ ¼ pð1Þ�pð0Þ
d

(
ð16Þ

In Eq. (16), d is the sampling interval of the spatial projection.
This method is referred to as the 2 point method.

p0ð0Þ ¼ �pð2Þþ4pð1Þ�3pð0Þ
2d

p0ð1Þ ¼ pð2Þ�pð0Þ
2d

p0ð2Þ ¼ 3pð2Þ�4pð1Þþpð0Þ
2d

8>><
>>: ð17Þ

Eq. (17) is referred to as the 3 point method or the midpoint
method. Finally we refer Eq. (18) as the 5 point method.

p0ð0Þ ¼ ½�3pð4Þ þ 16pð3Þ � 36pð2Þ þ 48pð1Þ � 25pð0Þ�=ð12dÞ
p0ð1Þ ¼ ½pð4Þ � 6pð3Þ þ 18pð2Þ � 10pð1Þ � 3pð0Þ�=ð12dÞ
p0ð2Þ ¼ ½�pð4Þ þ 8pð3Þ � 8pð1Þ þ pð0Þ�=12d

p0ð3Þ ¼ ½3pð4Þ þ 10pð3Þ � 18pð2Þ þ 6pð1Þ � pð0Þ�=12d
p0ð4Þ ¼ ½25pð4Þ � 48pð3Þ þ 36pð2Þ � 16pð1Þ þ 3pð0Þ�=12d

8>>>>>><
>>>>>>:

ð18Þ
3.3. Two-ramp-filter approach

The two-ramp-filter system block diagram is shown in Fig. 2b,
from which, we can see that the parabolic filter can be divided into
two ramp filters. In X-ray CT fields, the ramp filter is very widely
used in FBP type algorithms. Many practical ramp filters have been
designed by CT researchers. The three most common filters are the
Ram–Lak (R–L) filter, Shepp–Logan (S–L) filter, and Hamming win-
dow ramp filter [14]. For the implementation of these filters a very
important property of convolution has to be taken into account. In
Fig. 2b, p(t) is the spatial projection signal, g0(t) is the intermediate
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result and g(t) is the final output signal. Suppose that we sample
p(t) to be a discrete signal, p(n), having N points. The final output
signal should also have N points. However, this does not define
the necessary length of the intermediate result. The discrete sys-
tem block diagram is shown in Fig. 2c. In Fig. 2c, h1(n) is the UIR
of the first ramp filter and h2(n) is the UIR of the second ramp filter.
According to convolution theory, if the input signal has N1 points
and the UIR has N2 points, the output signal will have N1 + N2 � 1
points. Therefore, if p(n) has N points and h1(n) is an infinite long
signal, g0(n) will have infinite points. If one only selects N points,
the non-zero points outside of these N points will be lost. These
non-zero points carry useful information and discarding these
points will induce artifacts in the final reconstructed image.
Clearly, the two-ramp-filter method has an inherent defect, i.e. in
practice, the method cannot be ideally implemented. However
these deleterious effects can become negligible if an appropriate
finite window is used for g0(n) that includes most of the relevant
information in the signal. It should be noted that the acceptable
length may be several times of the initial N points.

3.4. Seven specific filtration methods

According to the three approaches, we can design seven specific
filtration methods, which are shown in Table 1.

The UIR for Method 4 is shown in Eq. (10), which will be called
hrec(n) to avoid confusion. The wave forms of the UIR and the fre-
quency response are shown in Fig. 3a and b respectively.

The UIR for Method 5 is shown in Eq. (19) (the derivation
method is the same with that of the rectangular window parabola
filter). The wave forms of the UIR and the frequency response are
shown in Fig. 3c and d respectively.

The UIR of Method 6 is shown in Eq. (20) (the derivation
method is the same with that of the rectangular window parabola
filter). The wave forms of the UIR and the frequency response are
shown in Fig. 3e and f respectively.

hsincðnÞ ¼ �
8n2 þ 2

p3d3ð4n2 � 1Þ2
n is odd ð19:1Þ

hsincðnÞ ¼
8n2 þ 2

p3d3ð4n2 � 1Þ2
n is even ð19:2Þ

hhammðnÞ ¼ 0:54hrecðnÞ þ 0:46
cos½ðnþ 1Þp�
4p2ðnþ 1Þ2d3 þ

cos½ðn� 1Þp�
4p2ðn� 1Þ2d3

" #

ð20Þ

In Eq. (20), the function is undefined for n = �1 and n = 1. By
inverse Fourier transform though, we can determine
Table 1
Illumination of 7 parabolic filtration methods.

Method name Approach

Method
1

2 points derivative Second derivative approach

Method
2

3 points derivative Second derivative approach

Method
3

5 points derivative Second derivative approach

Method
4

Rectangular-window parabolic
filtration

Direct parabolic filtration
approach

Method
5

sinc-Window parabolic filtration Direct parabolic filtration
approach

Method
6

Hamming window parabolic
filtration

Direct parabolic filtration
approach

Method
7

Two SL ramp filters filtration Two-ramp-filter approach
hð1Þ ¼ hð�1Þ ¼ � 0:54

2p2d3 þ
0:46

24d3 þ
0:46

16d3p2
ð21Þ

For Method 7, there are many different ramp filter options, e.g.,
Ram–Lak filter, Shepp–Logan filter, Hamming window ramp filter,
and Hanning window ramp filter. Here, we choose to use two
Shepp–Logan filters to demonstrate Method 7.

4. Results and discussion

Four experiments are performed to compare the effect of differ-
ent filtration methods on image quality. Experiment 1 is to give a
validation that the two-ramp-filter approach has inherent inaccu-
racies and that zero-padding can remedy them and improve image
quality. Experiment 2 compares the 3 groups of filtration
approaches by using 3 error criteria and 1 spatial resolution crite-
rion. Experiment 3 compares the 3 groups of filtration approaches
with 1% Gaussian noise added to the spatial projections. Experi-
ment 4 evaluates these filtration approaches on real data from a
physical bottle phantom.

4.1. The simulated phantom

To evaluate the image precision quantitatively, we designed a
phantom. The object used in this model consists of six spheres. Five
non-overlapping small spheres are embedded into a larger sphere.
Each sphere has a density in the range of [0, 1]. The parameters of
the model are shown in Table 2 and the diagram of the model and
the virtual detector is shown in Fig. 4. The dynamic range of the
model is from 0 to 1, which is the brightness range of gray image.
The simulated phantom used here contains both high and low con-
trast, making it a suitable model for both qualitative and quantita-
tive evaluation of image precision and spatial resolution.

4.2. Reconstruction error criteria

To evaluate image reconstruction quality, different error criteria
can be used. In this paper, we use the following 3 error criteria.

(1) Mean absolute error (mae)

We will use the mean absolute error (emae) as our first error cri-
terion. Note that the largest value and the amplitude of the
dynamic range for the model are both 1. In this case, mean abso-
lute error is essentially equivalent to mean relative error. For
example, if emae is 0.00835, the mean relative error is 0.835%. This
error criterion can be applied on a voxel-by-voxel basis as shown
in Eq. (22).

emae ¼
1
M

XM

m¼1

jf ðmÞ � rðmÞj ð22Þ

Here, we assume that the 3D object has M voxels and f(m) is a voxel
in the ideal model image and r(m) is the corresponding voxel in the
reconstructed image.

(2) Signal-to-noise ratio (snr)

If we consider the error in the reconstructed image to be noise,
we can apply the notion of SNR as a metric of the error. SNR is a
normalization criterion, i.e. it has nothing to do with the energy
of the signal. This error criterion (esnr) can also be applied on a
voxel-by-voxel basis as is shown in Eq. (23).

esnr ¼
PM

m¼1ðf ðmÞÞ
2PM

m¼1ðf ðmÞ � rðmÞÞ2
ð23Þ



Table 2
The parameters of the simulated phantom.

Sphere
1

Sphere
2

Sphere
3

Sphere
4

Sphere 5 Sphere
6

Density 0.5 0.6 0.7 0.8 0.9 1
Coordinate of center

of sphere
[0,0,0] [�2,2,0] [2,2,0] [2,�2,0] [�2,�2,0] [0, 0,0]

Radius 4 cm 1 cm 1 cm 1 cm 1 cm 1 cm

y 

4-4

10cm

x

32 

5 4 

-5 5

virtual detector

6 

1 

Fig. 4. The diagram of the z = 0 slice of the simulated model which consists of 6
spheres. The length of the virtual detector is 10 cm.

Table 3
The parameters of Exp. 1.

Algorithm 3-D FBP Filtration method Two-ramp-
filters
method

Interpolation
method

Linear Ramp filter type Shepp–
Logan filter

Length of
projection

10 cm Sampling interval of
projection

0.1 cm

Angle sampling
model

Uniform solid
angle

Number of polar angle 100

Number of
azimuthal angle

100 Sampling interval of
the reconstructed
image

0.1 cm

Matrix size of the
reconstructed
image

100 * 100 * 100
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(3) Normalized mean squared error (nms)
The normalized mean square error (enms)is another error metric,

which is applied on a voxel by-voxel basis as shown in Eq. (24).

enms ¼
PM

m¼1ðf ðmÞ � rðmÞÞ2PM
m¼1ðf ðmÞ � �f Þ2

" #1
2

ð24Þ

Here, �f is the average value of all voxels in the ideal model image.
Fig. 5. The central slices of the reconstructed objects using the two-ramp-filters filtra
different zero padding multiple applied to compare the effects. (a) is the standard mod
padded to 1, 1.1, 1.2, 1.3, 1.4, 1.6, 2 times length respectively (Exp. 1).
4.3. Spatial resolution criterion: Edge spread function method

The edge spread function (ESF) is used here to measure the spa-
tial resolution. First, a set of 1D profiles, orthogonal to an edge in
the image, are selected from the reconstructed image. These dis-
crete profiles are then fit to a Gaussian error function. A set of
FWHM (full width at half maximum) values are obtained according
to the parameters of the error function fits. Finally, the spatial res-
olution is obtained by averaging the FWHM values. The measured
deviation from the ideal step function, as determined from the
FWHM, is a measure of spatial resolution [6].

4.4. Simulation experiments of the two-ramp-filter approach (Exp. 1)

To test the two-ramp-filter approach, a simulation experiment
was performed. The experimental parameters are shown in Table
3. To observe the effect of zero-padding on this filtration method,
various degrees of zero-padding resulting in intermediate signals
of lengths 1, 1.1, 1.2, 1.3, 1.4, 1.6 and 2 times the length of the spa-
tial projections are implemented.

The reconstructed images are shown in Fig. 5, the error images
are shown in Fig. 6, the error criteria and spatial resolution crite-
rion for each zero-padding case are shown in Table 4. The central
profiles of the reconstructed object without zero-padding and with
zero-padding to double the length are shown in Fig. 7a and b
respectively.
tion method. To improve the image quality, zero padding technique is used, with
el image. (b–h) are the reconstructed images with the spatial projections are zero-



Fig. 6. The error images of Exp. 1 with a display window [0, 0.1]. (a) is the standard model error image. (b–h) are the reconstructed error images with the spatial projections
are zero-padded to 1, 1.1, 1.2, 1.3, 1.4, 1.6, 2 times length respectively.

Table 4
The error criteria and spatial resolution criterion of Exp. 1.

Zero padding times 1 1.1 1.2 1.3 1.4 1.6 2

emae 0.0576 0.0231 0.0158 0.0118 0.0100 0.0082 0.0072
esnr 17.34 75.10 100.86 114.12 119.02 122.93 124.68
enms 0.2792 0.1342 0.1158 0.1088 0.1066 0.1049 0.1041
Spatial resolution

(mm)
1.5111 1.5100 1.5094 1.5090 1.5067 1.5065 1.5064
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From Fig. 5, differences between reconstructed images are
essentially visually indistinguishable. However, a constant offset
is present in the object reconstructed without zero-padding. From
Fig. 7a, we can see that the reconstructed voxel values are less than
the standard object values. This constant offset is an artifact, which
can be seen in Fig. 6. This indicates that the two-ramp-filter
method has an inherent drawback in that it results in a constant
offset artifact. We can also explain the artifact according to law
of conservation of energy. In the two-ramp-filter method, the
intermediate signal should be infinite. However we can just select
finite length, therefore some energy outside the finite length lost.
According to the law of conservation of energy, the filtered
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Fig. 7. The profile of the central row of the central slice of the reconstructed object. No ze
b), the red profile is the standard profile and the blue one is the reconstructed profile. (Fo
to the web version of this article.)
projection signal lost energy. Finally, the reconstructed object lost
some energy. For the phantom is a real and positive object, so the
reconstructed profiles of the object are always lower than that of
the ideal object.

According to the theoretical analysis in Section 3.3, zero-pad-
ding can improve this inherent drawback and reduce such artifacts.
From Fig. 6, it can be seen that the artifact becomes less prominent
with longer, more zero-padded spatial projections. From Table 4,
we find that the error determined from the 3 different error criteria
become smaller with higher degrees of zero-padding used, while
the spatial resolution is almost the same.

In Fig. 7b, we can see that the constant shift phenomenon has
disappeared, which indicates that the zero-padding technique
solves the inherent defect of the two-ramp-filter approach.
4.5. Simulation experiments comparing these 7 filtration methods
without noise (Exp. 2)

As discussed in Section 3.4, seven filtration methods have been
designed. An experiment with the same experimental parameters
as those used in Exp. 1 (aside from the filtration parameters) is
used to compare these 7 filtration methods.
(b)
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Fig. 8. The central slices of the reconstructed object of Exp. 2. (a) is the standard model image. (b–h) are the reconstructed images using Method 1 to 7 respectively. Clearly,
the image reconstructed by Method 1 is blurry.

Table 5
The error criteria and spatial resolution criterion of Exp.2.

Index of filtration method 1 2 3 4 5 6 7

emae 0.0219 0.0088 0.0079 0.0089 0.0074 0.0079 0.0072
esnr 17.64 65.61 89.55 149.89 142.08 79.81 124.68
enms 0.2768 0.1435 0.1229 0.0950 0.0975 0.1301 0.1041
Spatial resolution (mm) 1.9640 2.3920 1.7116 1.1268 1.3131 2.0496 1.5064
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The reconstructed images using different filtration methods are
shown in Fig. 8, the error criteria and spatial resolution criterion for
these filtration methods are shown in Table 5, and the central pro-
files of the reconstructed objects are shown in Fig. 9.

From Fig. 8, it can be seen that the image of Method 1 is more
blurry than the others. Furthermore, Fig. 9 shows that the profile
using Method 1 is not sharp enough. These two figures indicate
that the 2 point method results in lower spatial resolution.

Upon analysis of the data in Table 5, it can be seen that Method
4 (rectangular-window parabolic filtration) and Method 5 (sinc-
window parabolic filtration) are two of the best methods, which
simultaneously provide relatively small errors and high spatial
resolution.
4.6. Simulation experiments comparing the 7 filtration methods with
Gaussian noise (Exp. 3)

To test the efficacy and applicability of the 7 filtration methods
in the presence of Gaussian noise, Exp. 2 is repeated with Gaussian
noise added to the spatial projections. The SNR used is 40 dB,
which means that the energy of the projection signal is 10,000
times that of the Gaussian noise.

For there is noise in the projection signals, we always reduce
the noise using a low-pass filter in real-world reconstruction. How-
ever the high frequency information of the object and the high fre-
quency noise are overlap. So the bandwidth of the low pass filter is
always a compromise. Too narrow bandwidth produces the object
distortion and too wide one let too much noise enter.

According to our experience on our EPR imager, using 0.4
Nyquist frequency to be bandwidth is a good compromise.

And the low pass filter can introduce about 1% noise. So in the
simulation experiment, we select 40 dB SNR projections to evalu-
ate the performance of the 7 parabolic filtration methods.
Reconstructed images using different filtration methods are
shown in Fig. 10, the error criteria and spatial resolution criterion
of these filtration methods are shown in Table 6, and the central
profiles of the reconstructed objects are shown in Fig. 11.

From Figs. 10 and 11, Method 2 and 6 can be seen to result in
relatively high reconstruction precision for they have lower noise.
However, Table 6 shows that Method 2 and Method 6 have rela-
tively worse spatial resolution. This tradeoff between spatial res-
olution and SNR is as expected. No filtration method can
reconstruct an image with the highest spatial resolution and the
highest SNR and a compromise is therefore unavoidable. Method
2 and 6 produce images with spatial resolution of 2.45 mm and
2.08 mm respectively, which are both acceptable compared to
the best resolution 1.22 mm, making these methods the best
options. Method 4 provides very good spatial resolution
(1.22 mm) but its reconstruction error is too large, making it a less
acceptable option.

From Fig. 3f, the frequency response of Hamming window par-
abolic filter can be seen to decrease between 60% and 100% of the
Nyquist frequency. Clearly, the Hamming window parabolic filter
can help to decrease high frequency noise. The frequency range
of white Gaussian noise is from 0 to the Nyquist frequency, so
we can conclude that Method 6 (Hamming window parabolic fil-
tration method) results in smaller error and smaller noise by
reducing the high frequency Gaussian noise components. In fact,
3 point filtration method is roughly equivalent to using a
Hamming-like window to filter the spatial projection. This can
explain why 3 point derivative method is always similar to
Hamming window parabolic filtration method.

In summary, the 3 point filtration method and Hamming
window parabolic filtration method are both good options for fil-
tration of projections contaminated by Gaussian noise. Clearly, 3
point filtration is preferred because of its simple computation
process.
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Fig. 9. The central profiles of the central slices of the reconstructed objects of Exp. 2.
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4.7. Phantom experiments for comparing the 7 filtration methods
(Exp. 4)

A phantom experiment, whose experimental parameters are
shown in Table 7, is used to compare the 7 filtration methods. A
photo of the bottle phantom used is shown in Fig. 12a.

There is noise in the acquired spatial projections, so a low pass
filter must be used to reduce the noise before parabolic filtration
process. However, the high frequency information of the object
and the high frequency noise overlap, which implies that the high
frequency information will inevitably be reduced by the low pass
filter. Thus, a compromise must be made between low noise and
high spatial resolution.

After the low pass filtration, the parabolic filtration is applied to
the projections. Each parabolic filtration method has different
properties. The aim of this section is to determine which method
Fig. 10. The central slices of the reconstructed objects with Gaussian noise added to th
using Method 1 to 7 respectively. Clearly, Method 2 and 6 are better (Exp. 3).
offers the best compromise between low noise and high spatial
resolution.

The reconstructed object with reduced noise by a low pass filter
whose bandwidth is 0.23 Nyquist frequency is shown in Fig. 12b–d.
It can be seen from the figure that, while the SNR is high, the spa-
tial resolution is not very good, i.e. the edges in the image are not
as sharp as they should be.

To improve spatial resolution, we determined that the use of a
low pass filter with bandwidth 0.4 Nyquist frequency is an accept-
able compromise. Slices through the reconstructed 3D objects are
shown in Fig. 13 and the profiles along the white line shown in
the images of Fig. 13 are shown in Fig. 14.

From Figs. 13 and 14, we can see that images reconstructed
using Methods 2 and 6 have lower noise, however they have lower
spatial resolution: 1.48 mm and 1.45 mm, respectively. The best
spatial resolution provided from Method 4 is 1.34 mm which is just
e projections. (a) is the standard model image. (b–h) are the reconstructed images



Table 6
The error criteria and spatial resolution criterion of Exp. 3.

Index of filtration method 1 2 3 4 5 6 7

emae 0.0543 0.0211 0.0276 0.0754 0.0577 0.0247 0.0457
esnr 10.52 51.31 45.21 8.33 13.97 49.40 21.46
enms 0.3584 0.1623 0.1729 0.4026 0.3110 0.1654 0.2509
Spatial resolution (mm) 2.1579 2.4502 1.7838 1.2174 1.3963 2.0808 1.7644
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Fig. 11. The central profiles of the central slices with 40 dB Gauss noise added to the projections (Exp. 3).

Table 7
The parameters of Exp. 4.

Algorithm 3-D FBP Filtration method Method 1–Method 7

Interpolation method Linear Points number of projection signal 147
Length of projection 3

ffiffiffi
2
p

cm Length of bin of the reconstructed image 3
ffiffiffi
2
p

cm
Angle sampling model Uniform solid angle Matrix size of the reconstructed image 128 * 128 * 128
Number of azimuthal angle 18 Number of polar angle 18

Fig. 12. (a) is the photo of the real bottle phantom, in which there is spin probe liquid. (b) is the slice at x = 39, (c) is the slice at y = 64 and (d) is the slice at z = 68. The display
window is [0.001, maximum value of the object]. The bandwidth of the low pass filter is 0.23. It can be seen that the images are almost noiseless however the bottle lost some
sharp details (Exp. 4).
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a little better than the resolutions of Method 2 and 6. Clearly, the 3
point filtration method (Method 2) and Hamming window para-
bolic filtration method (Method 6) offer good compromises
between low noise and high spatial resolution.
We can also consider the case in which a low pass filter is not
applied to the spatial projections so that all of the high frequency
information of the object as well as the noise in the projection is
maintained. Similar conclusion can be obtained that the 3 point



Fig. 13. The reconstructed slices at x = 39 with a display window [0.0015, maximum value of the object]. The bandwidth of low pass filter is 0.4. (a–g) are the images
reconstructed using Method 1 to 7 respectively (Exp. 4).
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Fig. 14. The profiles on the white lines of the images of Fig. 13 (Exp. 4).
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filtration method and Hamming window parabola filtration
method both provide good compromises between low noise and
high spatial resolution in the reconstructed images.

5. Conclusion

In this work, we designed and implemented 7 parabolic filtra-
tion methods which can be divided into 3 groups: direct parabolic
filtration, second derivative, and two-ramp-filter approaches.

To test and compare these 7 different filtration methods, 3 error
criteria and 1 spatial resolution criterion were used to quantita-
tively evaluate the reconstructed objects. Four experiments,
including simulated and real experiments, were used to compare
the 7 filtration methods.

The 2 point method resulted in low spatial resolution and low
precision, so it less attractive for EPRI image reconstruction appli-
cations discussed here. The two-ramp-filter method consistently
creates an offset artifact in the reconstructed images. Although
we found that zero-padding was a reasonable method for reducing
this artifact, the results suggest that this method is not ideal for the
EPRI applications discussed here.

In the noiseless case, the rectangular window parabolic filtra-
tion method and sinc window parabolic filtration method were
found to be the best filtration methods, simultaneously providing
relatively small errors and higher spatial resolution.

In the presence of Gaussian noise, the 3 point filtration method
and Hamming window parabolic filtration method both offer good
compromises between low noise and high spatial resolution. The
implementation process of the 3 point filtration method mainly
involves subtraction, whereas the implementation of the Hamming
window parabolic filtration method mainly involves convolution.
Since convolution requires multiplication and addition, the 3 point
filtration method is faster.

For real experimental spatial projections, noise is necessarily
present, but one must be cautious not to select too narrow a band-
width for the low pass filter in order to retain the high frequency
content of the reconstructed object. In this case, 3 point method
can provide a good compromise, so we conclude that the 3 point
filtration method is the optimal option for real EPR imaging.
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