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Principal Component Analysis Enhances SNR for
Dynamic Electron Paramagnetic Resonance Oxygen
Imaging of Cycling Hypoxia In Vivo

Gage Redler, Boris Epel, and Howard J. Halpern*

Purpose: Low oxygen concentration (hypoxia) in tumors

strongly affects their malignant state and resistance to therapy.
These effects may be more deleterious in regions undergoing

cycling hypoxia. Electron paramagnetic resonance imaging
(EPRI) has provided a noninvasive, quantitative imaging mo-
dality to investigate static pO2 in vivo. However, to image

changing hypoxia, EPRI images with better temporal resolution
may be required. The tradeoff between temporal resolution
and signal-to-noise ratio (SNR) results in lower SNR for EPRI

images with imaging time short enough to resolve cycling
hypoxia.

Methods: Principal component analysis allows for accelerated
image acquisition with acceptable SNR by filtering noise in
projection data, from which pO2 images are reconstructed.

Principal component analysis is used as a denoising technique
by including only low-order components to approximate the

EPRI projection data.
Results: Simulated and experimental studies show that princi-
pal component analysis filtering increases SNR, particularly for

small numbers of sub-volumes with changing pO2, enabling an
order of magnitude increase in temporal resolution with mini-

mal deterioration in spatial resolution or image quality.
Conclusion: The SNR necessary for dynamic EPRI studies
with temporal resolution required to investigate cycling hy-

poxia and its physiological implications is enabled by principal
component analysis filtering. Magn Reson Med 71:440–450,
2014. VC 2013 Wiley Periodicals, Inc.
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For decades, oxygenation status of tumors has been
known to have important prognostic implications (1).
Low oxygen concentration (pO2), or hypoxia, imbues
cancer cells with resistance to radiation therapy (2,3)
and strong correlation has been found between electrode
measurements of low pO2 and radiotherapy treatment
failure in humans (4). Hypoxic tumors are more resistant
to chemotherapy as well (5). Hypoxia also leads to a

more malignant state for cancers, e.g., faster tumor
growth due to abnormal proliferation (6), and plays an
integral role in increasing the potential for metastatic
progression (7).

These implications have led to increased interest in
methods for probing and, a fortiori, imaging pO2 deep in
tissues. The advances in methods to investigate/image
tissue pO2 are detailed in the literature (8–11). In partic-
ular, electron paramagnetic resonance imaging (EPRI)
has proven to be a useful modality for measuring tissue
pO2. EPRI noninvasively acquires highly-resolved, both
spatially (�1 mm3 voxels) and in pO2 (1–3 torr), 3D
images of in vivo pO2 (12–16). The low electromagnetic
wave excitation frequencies used in EPRI, comparable to
6 T MRI, penetrate deep in tissue (>7 cm). EPR pO2

images use an intravenously injected, nontoxic spin
probe, which distributes in the extracellular compart-
ment of tumors, to report local pO2 (17).

There are two forms of hypoxia in tumors, resulting
from different physiological processes: diffusion limited
hypoxia, creating chronically hypoxic regions, too far
removed from viable vasculature to receive enough oxy-
gen (18), and perfusion limited hypoxia, creating acutely
hypoxic regions. For many years, the former was
believed to be the only type of hypoxia present in
tumors and the most clinically relevant pO2 parameter.
More recent studies have found that perfusion limited
hypoxia is also present (19–22) and may even be the
major cause of hypoxia in tumors (22,23). Studies sug-
gest acute hypoxia (sometimes referred to as cycling or
transient hypoxia) may be as important a determinant of
cancer progression and patient prognosis as chronic hy-
poxia, although specific correlation of a quantitative
measure of cycling hypoxia with treatment outcome is
limited. It has been postulated that acute hypoxia may
be even more deleterious than chronic hypoxia and
therefore more clinically relevant because periods of
reoxygenation prevent hypoxia-related cell death and
select cells that can proliferate in hostile environments
by abrogating normal check point signaling (23–28).

Traditional measurements of tumor hypoxia in vivo
have been directed towards chronic hypoxia. Unlike
chronic hypoxia studies, data relating transient hypoxia
to treatment outcome are rare because methods for non-
invasive quantification of transient hypoxia need further
development. Current techniques include recessed-tip
oxygen microelectrodes (29–31), OxyliteTM probes (32),
T2

*-weighted MRI (33), 19F MRI (34–36), 18F-FMISO
positron emission tomography (PET) (37), as well as
EPRI (38,39). Phosphorescence lifetime imaging in
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window chamber systems (40) has sensitivity to dynamic
oxygenation but is an invasive measurement and not
well suited for evaluating the in vivo relationship
between oxygen fluctuations and treatment outcome.

Studies have found pO2 fluctuations with periods
from minutes to days (22,28,40–44). EPRI, heretofore, has
provided a means of determining the chronically
hypoxic fraction of a tumor, which has been found to
predict tumor curability (45). Chronic hypoxia as deter-
mined from EPRI has also been validated at the molecu-
lar level via correlation to known hypoxia response
proteins (46). Notably, EPRI obtained over longer times,
i.e., with lower temporal resolution, cannot differentiate
chronically hypoxic regions from acutely hypoxic
regions with an average hypoxic state during imaging,
but improved temporal resolution will enable this dis-
tinction. Recent studies have already begun to utilize
EPRI as a means for imaging temporal changes in pO2

(38,39,47). However, our standard EPRI pO2 images take
10 min, which may not provide adequate temporal reso-
lution to study higher frequency pO2 fluctuations. There-
fore, to investigate spontaneously occurring cycling
hypoxia in vivo, our temporal resolution must be
improved. Naturally, decreasing imaging time decreases
image signal-to-noise ratio (SNR). We have done exten-
sive work to enhance temporal resolution by improving
the hardware, data processing, and by using narrower-
line deuterated spin probes.

We have investigated improving SNR by post-process-
ing data to reduce noise. A data-processing method that
has proven useful as a denoising and/or feature-recogniz-
ing technique is principal component analysis (PCA).
Sometimes referred to as feature analysis or the Karhu-
nen-Loève transform, PCA has been used for the
enhancement and extraction of spatiotemporal features
in many different fields, including geoscience (48), facial
recognition (49), and astrophysics (50). In particular,
PCA has been used to denoise and highlight important
temporal features for dynamic medical imaging modal-
ities, e.g., gamma camera studies (51,52), electro/mag-
neto-encephalography (53), PET (54–56), SPECT (57,58),
and MRI (59–61).

The focus of this paper is to show, through simula-
tions and experiments, that PCA can be used as a prere-
construction, spatiotemporal filter for projection data
from dynamic EPRI studies. PCA filtering produces
images with higher SNR and therefore higher temporal,
spatial, and pO2 resolution. These PCA enhanced images
will allow dynamic EPRI to be used to investigate impor-
tant aspects of tumor physiology related to cycling
hypoxia.

METHODS

Pulsed EPRI Imaging Model

This paper is concerned with PCA applied as a spatio-
temporal filter to pulsed EPRI dynamic studies. The
pulsed imaging methods developed in our laboratory are
detailed elsewhere, starting with electron spin echo or
T2-imaging (62) and, more recently, inversion recovery
electron spin echo or T1-imaging (63). T1-imaging
reduces confounding spin probe concentration depend-

ent self-broadening and provides a near absolute pO2

image. Signal for these EPRI techniques comes from an
exogenous spin probe (trityl) (16,64) with an unpaired
electron that is remarkably difficult to reduce, particu-
larly in the in vivo environment. Both T2 and T1 report
on the local environment of the unpaired electron. The
electron relaxation rates (R2¼1/T2 and R1¼1/T1) are line-
arly related to local pO2. To transition from spectroscopy
to imaging, linear magnetic gradients are applied to spa-
tially encode an object. The magnetic gradients are
applied along different directions in a spherical geome-
try to obtain projections (Fig. 1a). The relaxation infor-
mation is encoded in the signal amplitude of projections
obtained with different t for T2-imaging or T for T1-imag-
ing. The Fourier transform of an acquired time-domain
projection (Fig. 1b) is a spatial frequency encoded projec-
tion (Fig. 1c). An inverse radon transform, e.g., filtered
backprojection, of many spatial projections from differ-
ent views is used to reconstruct a 3D image of spin-
density. For this work, the reconstruction algorithm used
was filtered backprojection with a Ram-Lak filter and fre-
quency cutoff at half of the Nyquist frequency for high-
frequency noise filtering. Taking a series of 3D images
varying s or T allows for the signal intensity in each
voxel to be fit as a function of either s, using Eq. [1], or
T, using Eq. [2], for T2- or T1-imaging, respectively, to
obtain a 3D image of average voxel T2 (R2) or T1 (R1),
thus providing pO2 for each voxel.

S tð Þ ¼ Ae
�2t=T2 [1]

S Tð Þ ¼ A 1� 2e
�T=T1

� �
[2]

PCA Algorithm

Principal component analysis is a method for defining,
from an n-D data set, a new space based on the covari-
ance of the data, such that the first few basis vectors, or
principal components (PCs), form a q-D space (q<n) con-
taining the relevant, highly-correlated features, while the
space spanned by the other components contains uncor-
related noise. Therefore, PCA provides a means for low-
order approximation of the data by projection onto the
subspace spanned by the first q PCs. This low-order
approximation using PCA acts as a spatiotemporal noise
filter for a high-dimensional set of data from a dynamic
EPRI study by separating correlated features from uncor-
related noise and only retaining these correlated features.
This procedure will be referred to as PCA filtering and is
applied to projection data, producing reduced-noise pro-
jections and, subsequently, higher SNR images.

In a dynamic EPRI study, multiple images are acquired
consecutively to obtain spatial and temporal pO2 infor-
mation. For each of these n images, m projections are
acquired, each with k points. All m of these projection
vectors are concatenated into n total projection vectors,
each with mk points. These vectors are arranged as the
rows in a matrix containing the projection data for the
entire dynamic EPRI study. The columns of this matrix,
p
*

i (i¼1,2,. . .mk), represent the temporal progression for
each of the mk projection data points. These column vec-
tors of length n are then mean-centered (p

*

i in Eq. [3]) to
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produce the matrix X in Eq. [4]. The covariance matrix,
S, can then be computed from X using equation [5].

p
*

i ¼ p
*

i �
1

mk

Xmk

i¼1

p
*

i [3]

Xn�mk ¼ p
*

1;p
*

2; � � � p
*

mk

h i
n�mk

[4]

Sn�n ¼
1

mk

Xmk

i¼1

p
*

ip
*T

i ¼
1

mk
XXT [5]

The next step is eigenanalysis of S. The magnitude of
the eigenvalues, lj , corresponding to the eigenvectors of
S, u

*

j, indicate the relative amount of variance or infor-
mation in the data lying along the direction defined by
the eigenvector or PC. One can define vectors t

*

j ¼ Xu
*

j

and use them to express the data matrix X projected
onto the orthonormal basis defined by the PCs using
equation [6].

X ¼
Xn

j¼1

t
*

ju
*T

j [6]

The eigenvectors are arranged with higher values of j
corresponding to eigenvectors with smaller eigenvalues.
Therefore, the sub-space defined by the first few PCs
contains most of the information in the original data.
This allows for an accurate representation of the data
using the low-order approximation from projecting onto
the first few PCs, i.e., only summing over the first q
terms q� nð Þ in equation (6). This low-order approxima-

tion selectively retains relevant information while dis-
carding uncorrelated noise, thus filtering the data and
enhancing SNR.

Simulations

Simulated dynamic EPRI studies evaluated PCA as a
method of approximating/filtering the projection data.
Simulations allowed for comparison of images recon-
structed from approximated noiseless data to images
reconstructed from the complete noiseless data, as well
as the comparison of unfiltered, noisy images to PCA fil-
tered images with the knowledge of the ideal, noiseless
images. Matlab (MathWorks, MA) simulations were writ-
ten locally. The digital phantom consisted of a main
ellipsoid body and four interior ellipsoid sub-volumes
varying in spatial orientation and size. The ellipsoid
sub-volumes 1–4 were 8.92, 4.88, 1.54, and 0.06% of the
entire phantom volume, respectively. The pO2 for each
sub-volume could individually be adjusted as necessary
and could be made to vary in time (Fig. 2). A second dig-
ital phantom consisting of a small cube with pO2 oscil-
lating in time, centered within a larger cube of constant
pO2 was also used. A forward projection algorithm simu-
lated projection acquisition with our EPRI technology.
These simulated projections were reconstructed using
standard protocol.

Figures of Merit

For noiseless simulations, mean squared error (MSE)
measured the fidelity of PCA filtered (approximated)

FIG. 1. Diagram of how a pulsed EPR image is obtained from projections. The red arrow in (a) represents a projection direction defined

using linear magnetic gradients. The pulsed echo signal from this projection using one of the pulse sequences shown in (b) gives the
time-domain projection and a Fourier transform gives the spatial projection in (c). This is repeated for many projections (represented by

points on the sphere in (a)) and an inverse Radon transform (e.g., FBP) produces a 3D image of the spin density in the object. [Color fig-
ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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images to images reconstructed from noiseless projec-
tions. MSE is defined by Eq. [7], where I 0i and Ii are the
ith voxels in the PCA filtered and noiseless images,
respectively, and V is the number of voxels in each
image.

MSE ¼ 1

V

XV

i¼1

I 0i � Ii

� �2
[7]

For noisy data, SNR was the image quality metric used
to compare images with and without PCA filtering
applied. Signal was defined as the voxel pO2 from the
noiseless image reconstructed using identical conditions.
Noise was defined as any deviation from the noiseless
image. This definition of noise accounts for random
noise as well as artifacts. SNR was calculated by divid-
ing the maximum of the signal by the standard deviation
of the noise. Projection SNR and temporal fluctuation
SNR were calculated similarly.

Mouse Experiments

Dynamic EPRI studies with live, tumor bearing mice
determined the effect of using PCA as a filter in experi-
ments investigating temporal pO2 fluctuations in vivo.
The pulsed imaging spectrometer used has been
described previously (13). The images from these studies
were 64 � 64 � 64 voxels3, with a voxel size of (0.66
mm)3. The EPRI images were registered with spin-echo
weighted MRI images, using methods described previ-
ously (65), providing anatomic information that EPRI
lacks, to delineate tumor from normal tissue.

Two female C3H type mice (Harlan Sprague Dawley
Inc., Indianapolis, IN) were used in these experiments.
Human mammary tumor cells, MCA4 F6m (M.D.
Anderson Hospital, Houston, TX), were implanted in the
mid-distal hind legs of the 8-week-old mice and grown
subcutaneously to an appreciable size (�2 weeks after
implantation). To prevent motion during imaging, the
animals were immobilized using a soft elastic vinyl poly-

siloxane dental mold material (GC America Inc., Alsip,
IL) and anesthetized with 1–2% isofluorane mixed with
medical grade air. Respiration frequency and depth were
monitored continuously. A 24-gauge angiocath was used
to cannulate the mouse tail vein for i.v. injection of the
spin probe. A digital needle probe thermometer (Physi-
temp, Clifton, NJ) monitored skin temperature. The skin
temperature was maintained at �37

�
C using adjustable

opposed heating lamps.
The first dynamic study implemented forced pO2 fluc-

tuations. The fluctuations were produced by having the
anesthetized mouse inhale alternating gases with differ-
ing fraction of inspired oxygen (FIO2). The experiment
was 1 h long. The mouse breathed carbogen (95% O2

and 5% CO2) for 5 min, followed by air (21% O2) for 5
min, repeated for six periods. The mouse weighed 22.3 g
when imaged, and the tumor was �400 mL. Sixty, 1-min
T2 images corrected for spin probe concentration self-
broadening bias were acquired.

The second dynamic study was 2 h long with the anes-
thetized mouse breathing air. The mouse weighed 25.5 g
when imaged, and the tumor was �300 mL. Eighty, 1.5
min T1-images were acquired.

These animal experiments were performed according
to the US Public Health Service “Policy on Humane Care
and Use of Laboratory Animals” and the protocols were
approved by the University of Chicago Institutional Ani-
mal Care and Use Committee (ACUP No. 71697). The
University of Chicago Animal Resources Center is an
AALAC approved animal care facility.

RESULTS

Simulations without Noise

Simulations without noise were used to determine how
the number of PCs required to obtain a reasonable
approximation of the data depends on the number of dif-
ferently oscillating volumes. Using the ellipsoid
phantom described in the methods section, noiseless
simulations were done with one, two, or three of the

FIG. 2. Ellipsoid phantom used for digital simulations of dynamic EPR imaging of pO2 changing in time with labeled ellipsoidal sub-vol-

umes and corresponding patterns of pO2 fluctuations.
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sub-volumes fluctuating about different mean pO2 values
with different temporal patterns (Fig. 2). Note that, while
the number of differently fluctuating sub-volumes was
varied, all sub-volumes were present in the imaged
object in fixed locations, with nonoscillating sub-
volumes having constant pO2 equal to the mean pO2 of
their respective pO2 patterns (Fig. 2).

Figure 3 plots the eigenvalues for the three cases. The
eigenvalue corresponding to a given PC is proportional
to the percentage of total variance in the data accounted
for by the PC and is a measure of the relevant informa-
tion in the data contained along the direction of the PC.
The first PC, which contains most of the information and
therefore has a significantly higher eigenvalue, is not dis-
played in Figure 3 for easier visualization of eigenvalues
for higher PCs. For all three cases there is a steep drop
in the eigenvalues for higher PCs. The dominant eigen-
values can be visually determined as those separated
from the flat portion of the curve: with one volume oscil-
lating, two PCs contain essentially all of the information
and therefore only two terms are needed for the summa-
tion in Eq. [6] to sufficiently approximate the data. Simi-
larly, for two and three oscillating volumes, only three
and four terms or PCs are needed, respectively.

Figure 4 shows the dependence of the MSE between
noiseless PCA filtered images and noiseless unfiltered
images on the number of PCs used to approximate the
projection data. For one oscillating volume, the MSE
with two PCs in the approximation is 86.3% lower than
with one PC. With three PCs, the MSE is only 1.2%
lower than that with two PCs. Therefore, the approxima-
tion for the case of one oscillating volume is sufficient
with two PCs. Similar results can be seen in Figure 4 for
two and three oscillating volumes. For two oscillating
volumes, the MSE curve flattens out after three PCs and
for three oscillating volumes this occurs after four PCs.

From Figures 3 and 4, it can be seen that Nþ1 PCs or
terms in Eq. [6] provide the optimal PCA approximation,
where N is the number of differently oscillating volumes.
Figure 5 further corroborates this by comparing the pO2

oscillations in different volumes with different numbers
of PCs used in the PCA approximation to the truth

(unfiltered noiseless oscillations) with one, two, and
three differently oscillating volumes.

In the case where there is noise, using more than Nþ1
terms or PCs will mainly add noise. Therefore, when
PCA is applied as a filter for the noisy simulations and
real data, only Nþ1 PCs should be used in the
approximation.

Simulations with Noise

The efficacy of PCA filtering of noisy data was investi-
gated using simulation studies with random gaussian
noise, approximating that of an actual 1 min EPRI scan,
added to the projections. Figure 6 compares the results
from a simulated dynamic EPRI study (60 1-min images)
without noise, with unfiltered noise, and with PCA fil-
tered noise. In this study, there is one oscillating vol-
ume; therefore two PCs are used for the PCA approxima-
tion. PCA filtering is applied to the projection data and
the noise level for the projections decreases by over a
factor of 5, resulting in higher quality images. The PCA
filtered image is much closer to the noiseless image than
the unfiltered image. The image SNR improves by a fac-
tor of 3.860.6. Higher image quality allows for better vis-
ualization of the temporal pO2 fluctuations as can also
be seen in Figure 6. PCA filtering of projections produces
a greater improvement in projection SNR compared to
the improvement in image SNR. This results from proc-
essing/filtering of the projections during reconstruction
(e.g., high-frequency noise in the projections is filtered
by the half-Nyquist frequency cutoff in the filtered back-
projection). This filtering has a more appreciable effect
on the unfiltered projections than on the PCA filtered
projections and subsequently brings the SNR of unfil-
tered images closer to that of PCA filtered images.

Similar simulations were done with two and three dif-
ferently oscillating volumes, with three and four PCs used
for the PCA approximation, respectively. Adding more
PCs ensures that the oscillation patterns from different vol-
umes are reconstructed properly, but includes more noise.
Therefore, while SNR is enhanced, the improvement
diminishes when more PCs are required for an accurate
approximation. Table 1 summarizes the effectiveness of

FIG. 3. Eigenvalue distribution for simulated EPRI data varying the
number of differently oscillating volumes. The eigenvalue corre-

sponding to the first PC has been omitted for easier visualization
of the distribution. Only PCs with corresponding eigenvalues con-
taining a significant percentage of the total variance in the data

set (those significantly greater than 0) must be included in the
PCA approximation. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

FIG. 4. Plots of MSE between the PCA filtered images and the
true noiseless images, as a function of the number of PCs used

for the approximated reconstruction for one, two, and three differ-
ently oscillating volumes. After Nþ1 PCs are included (N is the
number of differently oscillating volumes), it can be seen that there

is no appreciable decrease in the MSE. [Color figure can be
viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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using PCA approximation as a noise filter for different
numbers of oscillating volumes. Since the method of cal-
culating SNR depends on absolute signal amplitude and
weighting and/or normalization processes occur during
image reconstruction, direct comparisons between the col-
umns of Table 1 should not be made.

Simulations were also used to determine how PCA
filtering performance depends on the relative size/weight
of the volume exhibiting the temporal pattern of interest.
The digital phantom consisted of an outer cube with
sides 20 voxels in length and a smaller cube of varying
size centered inside exhibiting sinusoidal temporal pO2

fluctuations. The results of these simulations are shown
in Figure 7. The unfiltered data has SNR <0.5, resulting
in the signal being indistinguishable amongst the noise.
PCA filtering results in significantly better visualization
of the temporal fluctuations (higher temporal fluctuation
SNR) when the volume exhibiting the temporal fluctua-
tions is large relative to the total volume. As the fluctuat-
ing volume decreases in size so does the effectiveness of
PCA filtering until the temporal fluctuation SNR with
PCA filtering converges to that without filtering.

Simulations were used to determine how PCA filtering
affects image resolution by looking at the reproduction of
edges in an image. Ideally, intensity values along a line
perpendicular to an edge would follow a step function.
In reality, the finite resolution of the imaging system
results in blurring, causing intensity values along a line
perpendicular to an edge to become sigmoidal. The
amount of deviation from a step function is related to
the image resolution. Using this as a resolution metric it
was found that resolution is unaffected by PCA filtering.

Mouse Images

Dynamic EPRI studies of live mice bearing tumors were
conducted to determine the ability of PCA filtering to
enhance image quality for nonideal, experimental data.

Figure 8 shows the result of PCA filtering data from
the study with forced FiO2 fluctuations. Having the
mouse breathing normoxic and hyperoxic gases with a
fixed period of alternation provides a situation in which
the expected pattern of temporal pO2 fluctuations is
known. With this knowledge, the ability of PCA filtering
to improve SNR while preserving pertinent pO2 fluctua-
tions can be seen in the unperturbed tissue of a living
animal. Assuming one dominant mode of fluctuation fol-
lowing the forced FiO2 fluctuation, two PCs were used to
filter the data. These two PCs contained 92% of the total
variance from the original data. Figure 8a shows the
increased image SNR with PCA filtering. In Figure 8b,
the bold curve shows the periodic FiO2 fluctuations and
the dotted curve shows the expected physiologic
response to these fluctuations. The physiologic response
to switching breathing gas is not expected to be instanta-
neous, but rather have some latency, causing exponen-
tially increasing and decreasing tissue pO2. Figure 8c
shows an example of the temporal pO2 fluctuation
observed in the periphery of the tumor obtained by aver-
aging over the 27 voxel region of interest (ROI). Without
filtering, the SNR is too low to discern meaningful pO2

fluctuations. However, when PCA filtered, the data
shows the expected physiologic response to the fluctuat-
ing FiO2.

Figure 9 shows the results from the study of the air
breathing mouse. Two PCs were used for PCA filtering of
the data. Using more than two PCs decreased SNR and
was not found to help visualize additional patterns of

FIG. 5. Plots of pO2 fluctuations in the different sub-volumes of
the ellipsoid digital phantom from images reconstructed using dif-
ferent numbers of PCs for the PCA approximation. As the number

of differently oscillating volumes (N) increases, the number of PCs
required for the PCA approximated fluctuations to match the true

fluctuations increases as well (Nþ1 are required). Some curves
are not visible because they lie on top of one another. [Color fig-
ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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temporal pO2 fluctuations. Similar to the alternating air
and carbogen experiment, these two PCs contained 93%
of the total variance from the original data. In Figure 9a,
the image quality enhancement can be seen. The tempo-
ral pO2 fluctuations for the ROI at the periphery of the
tumor, highlighted in Figure 9a, can be seen in Figure 9b

with and without PCA filtering. In this region there
appears to be sinusoidal fluctuation of the pO2 with a
period of �2 h. The unfiltered data shows some sem-
blance of the sinusoidal behavior but PCA filtering eluci-
dates these fluctuations.

DISCUSSION AND CONCLUSIONS

PCA approximation of projection data from dynamic
EPRI studies is presented as a method for noise filtering
and enhanced visualization of cycling hypoxia in
tumors. Noiseless simulations show that to use PCA fil-
tering effectively without losing important information,
Nþ1 PCs are needed to approximate the data, where N is
the number of differently oscillating volumes. After the
first PC, each additional PC included allows accurate
visualization of the next dominant pattern of temporal
fluctuation, with dominance depending on the relative
size of the oscillating volume. This is true regardless of
which sub-volumes are oscillating, e.g., if only the small-
est sub-volume is oscillating two PCs would still accu-
rately approximate the data. Note that, spatially separate
regions exhibiting a common temporal fluctuation

FIG. 6. Summary of results from simulated dynamic EPRI study including random noise approximating that seen in experimental data.
PCA filtering is applied first to the projection data (first row) and dramatically reduces the noise. The noise level is more obviously
depicted in the inset. The projections are used to reconstruct 3D pO2 images using FBP (second row). The filtered images reconstructed

from the PCA approximated projection data have higher SNR and resemble the ideal noiseless image more closely than the unfiltered
image. The increase in image quality from the PCA filtering results in more accurate visualization of the temporal pO2 fluctuations (third

row) seen in the region of interest (ROI) designated by a white square. The correlation between the noiseless and unfiltered noisy tem-
poral pO2 fluctuations is r¼0.82, whereas the correlation between the noiseless and PCA filtered temporal pO2 fluctuations increases to
r¼0.98.

Table 1

SNR Enhancement From PCA Filtering, Varying the Number of
Oscillating Volumes

Number of

oscillating volumes

Projection

SNR

Image

SNR

Temporal

fluctuation SNR

1 (2 PCs) 282653 4866 2663

2 (3 PCs) 224633 4365 2362
3 (4 PCs) 193626 3968 1962
Unfiltered 49.360.4 12.861.2 5.560.8

SNR is the ratio of signal amplitude to the standard deviation of
the difference between noisy data and noiseless data. Qualita-

tively, the temporal fluctuation SNR can be used as a measure of
pO2 error and demonstrates an improvement with the noise
reduction from PCA filtering. For the unfiltered data, the amount

of noise in the projections and, therefore, image is independent of
the number of oscillating volumes.
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pattern are considered a single oscillating volume, i.e.,
commonly fluctuating regions need not be adjacent to
increase the dominance of their pattern of fluctuation in
the PCA based representation of the data. These results
apply for any arbitrary temporal pattern. Any pattern

represents a unique direction in the PCA defined n-D
space. Therefore, for example, if the majority of an object
is undergoing low-frequency oscillations and some por-
tions are undergoing these low-frequency oscillations
with high-frequency oscillations superimposed, two PCs
will reproduce the low frequency components for both of
the oscillating regions, but to reproduce the high fre-
quency oscillations as well, three PCs are required.

Simulated data with random noise approximating that
of experimental data showed that incorporating more
PCs in the PCA approximation resulted in worse SNR.
This is to be expected since noiseless simulations found
that using Nþ1 PCs resulted in an approximation of the
data essentially containing the entirety of the signal and
therefore, when noise is present, using PCs higher than
Nþ1 should almost solely add noise. This implies that,
as N increases and the number of necessary PCs
increases, the noise reduction seen from PCA filtering
diminishes. However, for the example shown in Figure 6
with a single oscillating volume, two PCs are used and
the image SNR is increased by a factor of 3.8. Image SNR
is proportional to the square root of the imaging time.
Therefore, for this example, using PCA filtering allows
for an improvement in temporal resolution by over an
order of magnitude while maintaining the image quality
of an unfiltered image. PCA filtering provides a means
for increasing temporal resolution of dynamic EPRI with-
out decreasing image quality. For the simulations pre-
sented here, the noise used was random and uncorre-
lated. In real EPRI experiments, this may not be the case
and the noise may have some correlation. Preprocessing
methods that could help whiten the noise and remove
correlation could improve the efficacy of PCA filtering.

The usefulness of PCA filtering decreases as the rela-
tive sizes of the oscillating volumes decrease (Fig. 7). As
less of the volume exhibits a certain pattern, the given

FIG. 7. Plot of the dependence of the temporal fluctuation SNR on

the relative size of the oscillating volume. The unfiltered curve
does not depend on the relative size of the oscillating volume and
stays relatively constant (SNR <0.5). PCA filtering results in signifi-

cant improvement of the temporal fluctuation SNR when the oscil-
lating volume is relatively large but as the size of the oscillating
volume decreases the curves converge to a common SNR.

FIG. 8. PCA filtering applied to a dynamic EPRI study with the tumor bearing mouse breathing alternating normoxic and hyperoxic

gases. a: Comparison of image quality for unfiltered and PCA filtered pO2 images. The tumor is outlined in magenta and the 27 voxel
ROI is outlined by the white square. b: Diagram of the breathing gas changing with time, i.e. the forced fluctuations in FiO2. The bold
line shows how the breathing gas was actually changed and the dotted line shows the expected response of the tissue pO2 to the alter-

nating breathing gas, assuming physiologic latencies. c: Observed temporal pO2 fluctuations averaged over the ROI shown. For the
unfiltered data, the signal is lost amongst the noise (correlation with expected response: r ¼ 0.13), whereas for the PCA filtered data,

the expected fluctuations are clearly seen (correlation with expected response: r ¼ 0.84).
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pattern begins to be considered noise rather than signal
by the PCA filtering and is erroneously discarded.

Simulations showed that PCA filtering, unlike many
commonly used filters, did not result in image resolution
degradation. This suggests that the apparently higher
contrast in the unfiltered images seen in Figures 8a and
9a is an artifact of noise. However, while image resolu-
tion is unaffected by PCA filtering in the sense that the
modulation transfer function is unaffected, dimension
reduction may not always be possible without loss of in-
formation. Relatively small volumes with important pO2

fluctuations can be considered noise by PCA filtering
and may not be resolved. In this respect, PCA filtering
affects spatial resolution. These implications must be
considered before applying PCA filtering. For situations
with dominant regions of signal amongst less-correlated
noise, there is no loss of resolution, but in the case of
actual physiology there may be small but real temporal
fluctuations (represented in the higher PCs) that are
unresolved in PCA filtered images.

Presently, how many oscillating volumes to expect in
vivo or how large these volumes might be are not defini-
tively known. However, studies suggest that many tumors
contain large regions undergoing cycling hypoxia and that,
while the spatial distribution and temporal pattern of
these fluctuations vary significantly from tumor to tumor,
for a single tumor the acutely hypoxic regions tend to have
pO2 fluctuations of a common pattern (40,66). Therefore,
PCA filtering is particularly suited to enhance dynamic
EPRI studies investigating cycling hypoxia, as PCA filter-
ing requires no a priori knowledge of the temporal or spa-
tial pO2 patterns and works well for situations with large
portions of the data having similar features and when there
are a small number of these features, or in this case, modes
of pO2 fluctuation. Preliminary results of PCA filtering
applied to dynamic EPRI studies of temporal pO2 fluctua-
tions in murine tumors are promising. PCA filtering works
exceptionally well for experiments involving forced fluc-
tuations in pO2 by alternating breathing gas for the mouse
between normoxic and hyperoxic (Fig. 8). This experimen-

tal paradigm results in pO2 fluctuations in regions with
functional vasculature following the periodicity of the
controlled FiO2 fluctuations. This is an ideal situation for
the application of PCA filtering because there is a single
dominant mode of pO2 fluctuation distributed over a large
portion of the imaged volume. PCA filtering for the forced
pO2 fluctuation experiment appears to be successful in
removing noise while preserving the expected pO2

fluctuations.
PCA filtering of dynamic EPRI studies investigating

spontaneous cycling hypoxia also has potential. The
example presented in this paper (Fig. 9) is an indication
that PCA filtering can enhance the visualization of spon-
taneous temporal pO2 fluctuations using dynamic EPRI,
so that cycling hypoxia can be imaged in vivo without
perturbing the biologic system being studied. One of the
limits to the entire concept of cycling hypoxia has been
the limitation of current techniques to quantify the
amplitudes of pO2 fluctuations and the volume of the tu-
mor undergoing such fluctuations. This has prevented
correlation of these parameters with the effectiveness of
anti-cancer therapy. There may even be other pertinent
characteristics of cycling hypoxia in addition to ampli-
tude and spatial extent of pO2 fluctuations. The advan-
ces presented in this work further enable the evaluation
of these characteristics of cycling hypoxia. This evalua-
tion can be obtained noninvasively, allowing for correla-
tion of cycling hypoxia and therapeutic outcome. This,
in turn, will begin to disentangle the relationship
between chronic and cycling hypoxia, and provide a
means for evaluating the role of both forms of hypoxia in
therapeutic outcome as well as therapeutic optimization.
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