Spectrometer Manager: A Versatile Control
Software for Pulse EPR Spectrometers

BORIS EPEL,'* IGOR GROMOV,> STEFAN STOLL,”> ARTHUR SCHWEIGER,?

DANIELLA GOLDFARB’

' Max-Planck Institute of Bioinorganic Chemistry, Miilheim an der Ruhr, D-45470, Germany
% Laboratory of Physical Chemistry, ETH Honggerberg, Ziirich, CH-8093, Switzerland
® Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel

ABSTRACT: A versatile control software for pulse EPR spectrometers is introduced.
Common and task-specific problems are discussed and their solutions are described. The
software provides the full spectrum of possibilities needed to perform arbitrary multidi-
mensional pulse experiments. It allows for an easy interfacing of commonly used hardware
components and enables straightforward modifications of the spectrometer. Good perfor-
mance, configurability, and a number of unique features turn this software into an excellent

tool for the operation of modern EPR spectrometers and upgrading old ones.
Concepts Magn Reson Part B (Magn Reson Engineering) 26B: 36—45, 2005

Periodicals, Inc.

© 2005 Wiley

KEY WORDS: pulse EPR; control software; pulse-programming language

INTRODUCTION

The rapid development of modern state-of-the-art
pulse EPR spectroscopy constantly creates new chal-
lenges for the hardware of the spectrometers. Because
commercial spectrometers cannot usually adapt to
them immediately, the design of home-built EPR
spectrometers with unique features still has high pri-
ority in many research groups worldwide. Such spec-
trometers can be built from independent stand-alone
devices, which are connected, configured, and man-
aged in different ways. This means that the designer
of a new spectrometer has to solve the problem of
communication with separate components and of ex-

Received 7 December 2004; revised 10 March 2005;
accepted 14 March 2005

*0On leave from MRS laboratory, Kazan State University, Kazan
420008, Russian Federation.

Correspondence to: Boris Epel; E-mail: epel@mpi-muelhe-
im.mpg.de

Concepts in Magnetic Resonance Part B (Magnetic Resonance
Engineering), Vol. 26B(1) 36—45 (2005)

Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/cmr.b.20037

© 2005 Wiley Periodicals, Inc.

36

periment automation, and will have to develop custom
control and acquisition software. Similar problems
can arise when an existing experimental setup lacks
some problem-specific components. Although such
components can often be found as separate devices,
the existing spectrometer software cannot control
them, and the experimentalists have to introduce ad-
ditional control software.

Many research groups active in the field of EPR
have developed various control programs indepen-
dently (a recent example is the program written by
A.V. Astashkin from the University of Arizona),
which are usually compatible only with a specific
instrument in a particular configuration. Because the
structure of these programs is typically tailored to
particular devices, even a minor change in the con-
figuration of the spectrometer becomes complicated.
Data format incompatibility, differences in the user
interface and in functionality, and limited possibilities
are common problems of these programs. More gen-
eral approaches were used in other areas of research,
especially in magnetic resonance imaging (MRI). Al-
though some MRI programs (/) are general enough
and can in principle be applied to EPR experiments,

they are too complicated and oriented toward special-
ized systems and “intelligent” device controllers. This
is in contrast to a typical pulse EPR console, which
consists of general-purpose devices and a single per-
sonal computer, performing all tasks from device con-
trol to data management.

The following is the suggested set of principal
requirements for a pulse EPR spectrometer control
software:

e Uniformity—unified user interface for all exper-
iments and instruments

e Versatility—a fast and easy adaptation of the
program to the spectrometer hardware configu-
rations

e Convenience—real-time tuning and monitoring
capabilities for all device settings and experi-
mental parameters, quick application of new ex-
perimental schemes, easy to learn graphical user
interface and good visual appearance

e Fast performance and robustness

In this article we present a software that matches
these requirements. The Borland C+ + Builder™ 6.0
(2) was used for its implementation.

FEATURES

The Spectrometer Manager for pulse EPR (SpecMan)
is a general spectrometer control software, an all-in-
one solution for pulse sequence generation, remote
device management, and acquisition of the corre-
sponding signals. It has the following features:

e A pulse (sequence) programming language
(PPL)

e User-defined pulse commands, variables, and ar-
rays

e Arithmetic operations on variables, arrays, and
constants

e Conditional statements, loops, and parallel com-
mands execution

e A configurable PPL interpreter that turns PPL
commands into predefined groups of pulses gen-
erated by pulse programmers. An optimization
of the pulse sequence for an efficient device
programming at minimum time

e Loop engine for up to three-dimensional (3D)
experiments. Transient signals can be acquired
as a fourth dimension

e All PPL variables and device settings can be
used as independent parameters for the experi-
ment

SPECTROMETER MANAGER 37

e All information recorded by devices (including
transient signals) can be stored

e Random (nonsequential) execution of the exper-
iment

e Real-time signal processing (integration and
baseline correction)

e A user-friendly interface

e All relevant parameters are visible or one click
away

e Single-document type of interface, two view
ports, file browser

e Hardware and pulse configurations wizards

e Real-time monitoring of acquired signals

e Duty cycle and maximum pulse-length protec-
tions. Safe ranges for device settings can be
specified to protect hardware from being dam-
aged

e An easy-to-support kernel-driver program struc-
ture. Drivers for devices that are commonly used
in pulse EPR. Flexible adjustment of the pro-
gram to the spectrometer hardware setup

Minimum system requirements: IBM PC compat-
ible computer with a 400 MHz processor, 64 MB
RAM, Microsoft Windows™ (95/98/9x/2000/XP).

CONCEPT AND STRUCTURE

SpecMan is based on the following assumptions: (i) a
general experiment can be represented as mutually
independent data points or transients recorded as a
function of independent discrete parameters, and (ii)
the pulse sequence can be described as a function of
independent parameters. Because the parameters of
the program are represented by arrays, their indices
can also act as independent parameters. We call them
“axes.” A single axis can index an arbitrary amount of
associated dependent parameters. The special case of
an axis where all parameters are constant is described
by one element only. The lengths of the other axes are
not limited. The experiment is completed when all
possible combinations of indices are scanned, produc-
ing an N-dimensional matrix of experimental points,
where N is the number of independent parameters.
The structure of the program is shown in Fig. 1.
The different blocks of the figure represent functional
modules, and arrows show the data flow inside the
program. The part of the program that scans indepen-
dent indices during the experiment is called the loop
engine. It can maintain a number of axes: X, Y, and Z
for 3D experiments; T for transient data; and P for the
initial setup of parameters. A special “sum” option
allows one to sum data points over an axis. The order

38 EPEL ET AL.

Loop Engine

{ Pulse Setup Wizard (GUT) |
Pulse Engine
4|—~ Virtual machine
j=
3| 5

Experiment

Setrings Editor N
% xes,
(Guy PPL variables,

Device seltings
PPL Compifer

Initial settings

PPL program

slow properties

coell.

Pulse assembler

[ast propertics

Acquisition (Real-time)
View port (GUT) || Data Engine
@
Scope (GUD) £
T Virtual Devices
”

V. §
xperiment Conirol Hardware Wizard pectrometer
Guy Gy Device Drivers

Figure 1 Structure of SpecMan. The hardware-dependent
part is shown in the shadowed box. Major program modules
are shown in bold. Components of the graphical user inter-
face are denoted by GUIL

of the X, Y, Z, and sum indices can be freely chosen.
Each axis can be scanned sequentially or randomly,
depending on the settings. For example, consider a
two-pulse echo experiment, recorded as a function of
the magnetic field with a two-step phase cycle. There
are two independent parameters (field and time 7
between the pulses) and one additional index, the
phase cycle. The different phase cycle traces are not
included in the data, but each point of the final data set
is the sum of points corresponding to different phase
cycle indices with different weight factors (+1 and
—1 in this case). If the user’s intention is to record the
dependence of the echo-detected EPR line shape on T,
the index order will be (i) phase cycle, (ii) 7, and (iii)
magnetic field. Otherwise, an experiment that mea-
sures the two-pulse echo decay as a function of the
magnetic field may have the index order (i) magnetic
field, (ii) phase cycle, and (iii) T.

The virtual devices represent the connected hard-
ware components. The mechanism of interaction be-
tween virtual and real devices is built into the virtual
spectrometer program module. The device-dependent
parts of the virtual spectrometer (device drivers) con-
tain an implementation of the single device function-
ality and are able to execute standard requests such as
to set and acquire device settings (properties) and to
initialize a device. The full configuration of the spec-
trometer contains the description of the connected
virtual devices (name, assigned driver, initial settings)
and is loaded from a text (*.cfg) file. A special hard-
ware wizard helps to create and modify this file. The
configuration file also contains various restrictions on
device settings to protect the spectrometer from being
damaged. Different setups can be realized by modi-
fying this configuration file only. The settings editor
can define any of the device properties as parameter of
an experiment.

Two kinds of device properties have been classi-
fied to cover all possible device functionalities. The
first type is created for device settings that are con-
stant during execution of a single experimental point
(slow property in our terminology), such as micro-
wave power, magnetic field, or temperature. These
properties are readable (acquired data) and writable.
Writable properties can be controlled directly through
the graphical user interface (GUI).

The second type of properties include pulse se-
quence events and is designed for devices that are
active during the execution of the experiment (fast
properties). Each of the fast properties describes a
single output of an arbitrary pulse generator with two
logical states. The pulse engine automatically gener-
ates pulse event sequences according to the user-
written program in PPL. The heart of the pulse engine
is the virtual machine, the interpreter of the PPL
assembler commands. It has eight-bit commands, a
16-bit index of commands and variables, a double
floating-point precision format of data, and one oper-
ational register. The vocabulary of the virtual machine
has 28 commands, including arithmetic operations;
register, indexed, and double-indexed data transfer;
and logical operations. Up to 254 user-defined (two
reserved) pulse commands and 32,768 variables (in-
cluding array elements) are supported. The overall
length of a PPL program is limited to 32,768 assem-
bler commands. The PPL compiler is built using GNU
Bison and Lexer packages (3). The description of the
user-defined pulse commands is loaded from the pulse
configuration file (*.cfp). The pulse setup wizard as-
sists in the creation of the pulse configuration. Using
the settings editor any PPL variable can be defined as
an independent experimental parameter.

The information on each point is stored in the
experiment data block. It contains the experiment
axes description, including associated variables, the
pulse program, initial device settings, and, after the
end of experiment, the acquired data. The data from
the devices can be processed in real time in the
acquisition engine before it is stored in the memory.
The whole experimental procedure is loaded from and
stored to experiment (*.exp), data (*.d01), or template
(*.tp)) files. The GUI provides full control over prep-
aration and flow of the experiment.

Control Sequence

Each point of an experiment is produced according to
the control sequence, which includes (i) programming
of slow properties, (ii) execution of the sequence, and
(iii) data transfer from acquisition devices. The se-
quence of actions during the first and last stages has

one experiment point

1%@[123|][123|:|[;2:_|:|[il jm

H_%H

Figure 2 Sequence of events in the loop engine. The
brackets represent the cycles along the axes points.

devices setup

no influence on the result, whereas the behavior of the
devices during the second stage is ordered in time and
no control is possible during execution. The time
diagram of an experiment is presented in Fig. 2. The
setup of the device properties occurs before each
experimental point. When the properties correspond-
ing to all axes are programmed, the pulse sequence is
triggered and the data are acquired. At the end of data
acquisition, the next experimental point can be pro-
grammed. Additional device setups (not shown in the
figure) can be done after every point as well as before
and after the experiment. It can be used to delay the
next point and to switch on devices during run-time
only.

Pulse Programming Language (PPL)

The syntax of PPL is partially inherited from the
spectrometer control software used at the Weizmann
Institute and at ETH (4). PPL is designed to describe

a

time t950,
signal a

£180, tau

mwpulse t90

wait tau
mwpulse t180
wait tau

detect '+a'’

time t90,
int ph %% phase index

T oo O 0, o0
T oS O o

SPECTROMETER MANAGER 39

the time sequence of events. The main difference
between PPL and conventional programming lan-
guages is that each PPL command starts at a specific
time defined by a hidden variable (internal time
counter) and has a specific duration. The user cannot
directly access this counter, but it can be changed by
the execution of the PPL. commands. Each PPL com-
mand affects multiple pulse channels (see the pulse
generation section for a more detailed description).
Because all pulse commands have user-defined ac-
tions, the PPL is hardware independent, and programs
written in PPL can be executed on any spectrometer.

Figure 3(a) gives an example of a PPL program for
a two-pulse echo experiment. It starts with the decla-
ration of the variables and the acquisition stream “a.”
Two microwave (MW) pulses (mwpulse) are sepa-
rated by delays (wait) and are followed by a detect
command. The detect command has two functions: (i)
it generates the trigger for the data acquisition and (ii)
specifies the acquisition stream and its coefficient,
which is required for phase cycling (+1 for the “a”
stream in this case). Although the program looks
simple, for a typical pulse EPR application, the user-
defined mwpulse command will generate a series of
pulses fed to the MW switches, the protection switch,
the phase shifters, and the amplifier gate, each with its
own specific timings (see the pulse generation sec-
tion).

t180, tl1, t2,

Q. 0

tau

quadrature detection

signal a,b

detection coefficients
ha = [l+al,l_al,l+al,l_a!]
hb: ['+bl,l_b|,|+bl,l_bl]
phase cycling pulse pattern
180 = [0, O, 1, 1]
ph%0 = [0, 1, 0, 1]

mwpulse t380, O

wait tau

mwpulse t380, O

wait tl

mwpulse t180, 1, phl80 (ph)
wait t2

mwpulse t90, 0, ph90 (ph)
wait tau

detect dpha (ph),dphb (ph)

Figure 3 Examples of PPL programs. (a) Two-pulse echo sequence; (b) HY SCORE sequence with

four-step phase cycle.

40 EPEL ET AL.

7 States
‘ 0 1 2 0

Outputs

ol

5T

MW switch 1
MW switch 2

Phase 1

Patterns
[\®]

Phase 2

X Protection switch |

Figure 4 Definition of mwpulse command patterns for a pulse EPR spectrometer with two
channels and two phase shifters. Crossed cells indicate the presence of corresponding pulses in the

output pattern.

From a programming point of view, the pulse
program is a subroutine executed at every experi-
mental point with the declared variables as argu-
ments. Together with other experimental parame-
ters, these variables are visible in the loop engine
and have to be declared using one of the variable
type specifiers: time, int, real, or bool. Other data
types, like arrays, are defined only within the sub-
routine and cannot be controlled by the loop engine.
The PPL output returns the names of acquisition
streams and detection coefficients, which are used
later by the acquisition engine. Multiple acquisi-
tions in the pulse program are not yet supported.
The assignment of devices to PPL streams occurs in
the loop engine. Additional language features in-
clude conditional statements (if . .. else ... end),
looping (repeat . . . end), and parallel execution of
pulse subsequences (parallel . . . end).

Pulse Generation

In general, an EPR spectrometer requires complex
control pulse patterns. A number of service pulses
with different timings are required. Thus, a PPL com-
mand has to be able to produce multiple pulses. For
example, consider a typical realization of the mw-
pulse command on an EPR spectrometer with two
MW channels. The command has to affect six de-
vices: two MW switches, two phase-shifters, the re-
ceiver protection switch, and the trigger (gate) for the
MW amplifier. Consequently, the pulse programmer
device has to have at least six outputs. Overall, there
are 64 different combinations of output states that can
be generated by these outputs, but only six of them
have practical importance because the amplifier and
the protect switch pulses are always required and only

one phase shifter at a time is used. Thus, it is more
reasonable not to use a general index to all states but
rather only four indices for specifically grouped out-
puts (patterns) as is shown in Fig. 4. This means that
a pulse command would have four parameters in
addition to the pulse duration. But the one-state pat-
tern indices for protection switch and amplifier can be
omitted. Hence, in addition to the duration, the mw-
pulse command will have indices for the MW switch
and phase patterns only. For example, an “mwpulse
50 ns, 0, 17 statement will produce a pulse on the first
MW channel with the second phase state, and with
protection switch and amplifier pulses. Alternation of
pattern indices is extensively used for phase cycling
as shown in Fig. 3(b).

Each pulse output has an independent set of pa-
rameters. The lead and trail parameters define the
shifts of the real events relative to those generated by
PPL in order to compensate for hardware delays.
Maximum duty cycle and maximum pulse-length re-
strictions protect the spectrometer from damaging. An
additional parameter specifies the algorithm of the
pulse generation. Six different algorithms are used.
The “exact” algorithm produces a pulse with the
length specified in the pulse command. “Up,”
“down,” and “up/down” algorithms serve to produce
triggers with corresponding active slopes. The length
of the trigger pulse is a parameter of the output as
well. The “potential” algorithm ensures that the out-
puts have a certain state at points in time defined by
the pulse command. It is used, for example, to operate
phase shifters. The “trigger” and “potential” algo-
rithms minimize the transfer time of the pulse se-
quence to the hardware. The “space” algorithm gen-
erates nonoptimized events.

user reptime €os _ eor

Jlilolil [0 —]

repetition time

Figure 5 General scheme of a pulse sequence.

Pulse Sequence

The whole pulse sequence generated by the pulse
engine is presented on Fig. 5. It consists of a user-
programmed command sequence and automatically
inserted service commands. This allows one to ex-
clude experiment-independent commands from the
pulse program. The sequence starts with the “begin-
ning of sequence” (bos) command. Bos is followed by
the user sequence produced by the pulse program.
The “repetition time sequence” (reptime) command
can be inserted before or after the user sequence,
depending on the settings. The length of the reptime
command is calculated according to the repetition
time of the experiment. Finally, “end of sequence”
(eos) finishes the loop of the main sequence. After the
repetition loop, the “end of run” (eor) command is
inserted. The special scope command provides the
scope trigger for signals monitoring on an oscillo-
scope. It is automatically inserted at the beginning or
the end of a specified time interval in the pulse se-
quence. All commands are defined in the pulse con-
figuration.

Graphical User Interface

The SpecMan GUI design has a single-document
style. Only one experiment can be configured and

Device Configuration Dialog

SPECTROMETER MANAGER 41

executed at a time. The layout of the main interface
components is presented in Fig. 6. The left part of the
interface contains the experiment selector, the exper-
iment flow control buttons, and the settings editor
(from top to bottom). The experiment selector allows
browsing of spectra stored in the memory. The set-
tings of stored experiments can be copied to the active
experiment. The setting editor has four panels: exper-
iment axes editor, PPL program text editor, and initial
and run-time device setup. Two additional panels
contain the configuration files browser and a message
log window. The shadowed horizontal bars of the
axes editor represent axes. Each axis (except P) has a
size and a certain number of repetitions. The order of
bars (from top to bottom) represents the order in
which axis indices will be modified (from inner to
outer ones). The designation of the axis (T, X, Y, Z)
shows the order in which experimental data will be
saved to the file. The white bars below each axis
represent the associated parameters (i.e., tau) and ac-
quisition streams (a, b). The right part of the interface
presents two 1D view ports for experimental data.
Each view port has selectors for the data source (ac-
quisition buffer or main storage array), for the acqui-
sition stream, and for the abscissa dimension of the
plot. Scroll bars on the right allow browsing data
along the other dimensions.

Real-time Signal Processing

If a transient recorder is available, SpecMan can ac-
quire the shape of a spin echo. However, for most
applications, only the integral of the echo signal is of
interest. SpecMan can integrate in real-time transient

Pulse Configuration Dialog Auto-Save Controls

Fxperiment Selector

Experiment Flow

Controt : {C band first echo 2p ESEEM {smc1040 =}

. i i !
Settings Editor =1 o Lol
ERROERIN s o
Transicnt Axis: - &5 | ppl | selup] dev | i | by |

- - T sigral size 400 reps 30
Acquisition Channels 4 i e
3

Second Dimension e TS wops 1

tau 200 s ster 16 ns

size and repetition:

L.
_ Experiment View Port

1 bard first echo

Parameter of P parameter

the Experiment 190 B0 ns
[31:11} 180 ns
RepTime 10ms

Constant Parameters oh 12

+Variable patterns

{protect_swich

Control fo} the fine

o
X tousSsa ns %k
H

Second View Port

timings tunning

Sample Description

. Abscissa Selector
AT

ol

ata Buffer Selector

C band first echo 2p ESEEM (srmc 104040802, exp) i

Figure 6 The front end of SpecMan.

42 EPEL ET AL.

signals in a user-specified range. In addition, zero-
and first-order baseline corrections are implemented.

Experimental Data Protection

There are situations where the normal flow of an
experiment can be disturbed (e.g., due to deterioration
of the sample, hardware failure, or a sudden change in
temperature). For such cases, SpecMan has a multi-
level protection for already recorded data. The data
acquisition streams of SpecMan are buffered. This
means that the data from devices are first stored in an
intermediate buffer and are added to the main storage
array only at the end of the scan. When the user
observes an experimental flow disturbance, the exper-
iment can be stopped and preserved in the main stor-
age array in the state it was before the last scan, or the
last scan can be suppressed, allowing the user to
continue with the experiment. The content of inter-
mediate buffer and main storage array of any stream
can be monitored on-screen. An auto-save option is
included, where SpecMan saves the current state of
the main storage arrays at defined time intervals. This
is a convenient feature, which is not available in
commercial pulse EPR spectrometers. It avoids losing
data, which have been accumulated over a long time.

Device Drivers

Here we provide a list of devices that are fully com-
patible with the current version of SpecMan. Pulse
programmers (highest time resolution is shown in
brackets): DG535 (Stanford Research, 10 ps), RS690
(Interface Technology, 4 ns), PulseBlaster (SpinCore,
6.6 ns, shortest pulse 52.8 ns), PulseBlaster ESR
(SpinCore, 3.3 ns, shortest pulse 3.3 ns, shortest delay
16.5 ns), and AWG1000-DOUTS (Chase Scientific, 1
ns). Fast digitizers/averagers: DP and AP series (Ac-
qiris, dwell time up to 0.5 ns). ADC boards: E-series
and Basic Multifunction DAQ boards (National In-
struments, 200 kS/s). Field controllers B-H15,
ER032M (Bruker). RF synthesizers and generators:
PTS310 (Programmed Test Sources, Inc., connected
through 96-pin digital in/out port), arbitrary wave-
form generator LW420 (LeCroy), SMX and SMT
series (Rhode and Schwartz), EGS4420 (Agilent),
AWG 1000 (Chase Scientific), and MW generator
SMR40 (Rhode and Schwartz).

RESULTS

In this section, three spectrometers that are con-
trolled by the SpecMan shell are described. The

mw ﬂTl—IT/_

02 04 06 08 1 12 14 16 18 2
T (ps)

Figure 7 W-band two-pulse echo envelope of a single
crystal of Cu-doped L-histidine measured at 8 K.

first one is a pulsed EPR/ENDOR W-band spec-
trometer (5) at the Weizmann Institute of Science.
The console is based on an X-band setup (4) with
some modifications. It consists of a 400 MHz com-
puter, a RS690 pulse generator, a National Instru-
ments 6014 analog-to-digital converter connected
to a boxcar integrator, a National Instruments PCI-
GPIB (peripheral component interface-general pur-
pose interface bus) communication card, and a PCI-
96-DIO digital input-output card connected to the
two-channel frequency synthesizer PTS310. Figure
7 shows a two-pulse echo decay of a Cu-doped
L-histidine single crystal measured on this spec-
trometer using SpecMan. The pulse program listed
in Fig. 3(a) was used to obtain this decay.

The second setup is located at the Max-Planck
Institute of Bioinorganic Chemistry and is designed
for performing ENDOR and ELDOR experiments
on systems with large hyperfine couplings, as found
for example in compounds with manganese ions. It
is installed on a Bruker ESP380 spectrometer. The
standard RF synthesizer of the Bruker ESP380
spectrometer cannot generate frequencies above
150 MHz. In addition, the present spectrometer
does not have a second MW channel. Thus, external
RF and MW generators had to be used. A proxy
console was built on a SpinCore PulseBlaster-
100™ pulse generator, an Acqiris DP235 fast digi-
tizer, Rohde and Schwartz SMR40 and Agilent
EGS4420 generators, and an NI PCI-GPIB card. To
perform ELDOR experiments, the SMR40 genera-
tor was connected to a channel of the ESP380
spectrometer. The MW pulse sequence was pro-
grammed using the ESP380 console. The generator
frequency was controlled via a GPIB. The spin-
echo signal was recorded on the proxy console,
which was triggered by the zero-time pulse of the
ESP380. Figure 8(a) shows ELDOR-detected NMR

SPECTROMETER MANAGER

a | b .
ignal GPIB _ signal GPIB
trigger Vg ¥| MW trigger Vg pulse >| RF ‘l
| v
ESP380, MW bridge | » O Elexsys 580, MW bridge | » O
Mn(IV) ™ NIA ITWMFLV
‘ T L I e T 4
M) R |
5 |
i
50 100 150 200 250 3(;0 25 k30’ ’ 35 "40 ‘ ‘4V5 50 55 ’ 60 ’A65

ELDOR Frequency mw,-mw (MHz) ENDOR Frequency (MHz)

Figure 8 Block diagrams of proxy setups, created to extend the possibilities of a Bruker ESP380
X-band spectrometer and a Q-band spectrometer equipped with an E5S80 console together with
examples of recorded spectra. The corresponding pulse sequences are shown as insets. Left: X-band
ELDOR-detected NMR spectrum of >>Mn in BIPY recorded at 3.8 K. The first MW pulse length
was 9 us. Features attributed to hyperfine transitions of Mn in different electron states are marked.
Right: Q-band proton Davies-ENDOR spectra of a Cu(ll)-doped a-glycine single crystal. The
spectra were recorded at 15 K with an RF pulse length of 25 s and an unmatched RF coil. The
incident RF power was about 450 W. Spectrum (i) is recorded with sequential acquisition and the
spectrum (ii) is recorded with random acquisition. The arrow indicates the artefact caused by

43

heating.

(6) spectra of [Mn™Mn"Y(m-0),bipy,]C10, (BIPY
complex) (B. Epel and L. Kulik, unpublished re-
sults). For the ENDOR setup, the output of the
EGS4420 was directly connected to the RF ampli-
fier and was gated using the pulse from the Pulse-
Blaster. It also generated trigger pulses for the
spectrometer. The zero-time pulse of the spectrom-
eter was used to trigger the acquisition.

A similar setup, which consists of a RS690 pulse
generator, an AP240 fast averager, and an LW420
arbitrary waveform generator, is used at the Swiss
Federal Institute of Technology (ETH) to perform
random swept ENDOR experiments on a Q-band
EPR/ENDOR spectrometer equipped with a Bruker
E580 console. Proton Davies-ENDOR spectra of a
Cu(II)-doped a-glycine single crystal obtained with
this setup are shown in Fig. 8(b).

One of the unique features of SpecMan is its ability
to execute an experiment along one dimension in
random order. It has been demonstrated (7) that ran-
dom acquisition removes the correlation between ad-
jacent experimental points. Especially for ENDOR
spectra with broad lines and weak signals, this type of
acquisition diminishes unwanted effects caused by
RF-induced warming. This is illustrated in Fig. 8(b),
where the hump around 35 MHz, generated by a
sequential acquisition, is eliminated completely by
random acquisition.

Performance

The two main functions of the program, computation
and communication with devices, will inevitably need
some extra experimental time. The efficiency of the
software-hardware complex can be estimated using the
overhead parameter defined as: OH = (real experiment
length/calculated experiment length — 1) X 100%. Here
we present a summary of the overhead values measured
on various hardware configurations for two of the most
popular pulse EPR experiments, HYSCORE (8) and
Davies ENDOR (9). The HYSCORE experiment re-
quires four MW pulses and one detect trigger pulse. A
total of 128 points were acquired in each of the two
dimensions with 10 shots per point, a four-step phase
cycle, two detection channels (in quadrature), and a
repetition time of 1 ms. The Davies-ENDOR experiment
requires three MW, one RF, and one detect trigger pulse.
A time trace with 500 points was measured on a single
detection channel with 10 shots per point and a repetition
time of 1 ms. Other settings, such as length of pulses and
integration window, do not affect the overhead. Less
complicated experiments generally show smaller over-
head in similar configurations. An increase of the repe-
tition time or the number of shots typically reduces the
overhead as well. Use of different versions of the Win-
dows operating system also has some impact on the
performance.

44 EPEL ET AL.

Table 1 Overhead of the HYSCORE and the Davies-ENDOR Experiments

on Different Hardware Configurations

OH, OH, Davies
Configuration HYSCORE ENDOR
SpecMan, dummy configuration. All required pulses are 27%112% 22%/10%
generated, AMD Duron 600 MHz/1.2 GHz processor*
SpecMan, Interface Technology RS690 pulse generator 828% 1200%
(GPIB) and Acqiris AP240 averager (PCI), LeCroy
LW420 (GPIB)
SpecMan, SpinCore PulseBlaster ESR pulse generator (PCI) 22.8% 238%
and Acqiris DP235 digitizer (PCI), Agilent EGS4420 RF
generator (GPIB)
State-of-the-art commercial spectrometers ~18% ~200%

GPIB = general purpose interface bus; PCI = peripheral component interface.
* The overhead for dummy devices is calculated according to the formula OH = (real experiment length/calculated experiment length for

repetition time 1 ms) X 100%.

The type of the device interface bus is specified in brackets. Microsoft Windows 2000 Pro (TM) SP3 is used in all SpecMan configurations.
The calculated experiment lengths are 655 s for HYSCORE and 5 s for Davies ENDOR.

The HYSCORE experiment stresses the pulse pro-
grammer. A significant part of the pulse sequence is
changing from one experimental point to another.
Contrary to that in the ENDOR experiment, the pulse
sequence is the same for every point and only the RF
is changed. Thus the key factor is the performance of
the RF generator.

The SpecMan program has a special dummy
driver, which can emulate the behavior of inputs and
outputs of any “real” device, accept commands and
generate required data. The computational overhead
estimated using a dummy device configuration is pre-
sented in the first row of Table 1. Because it is
complicated to precisely emulate a 1 ms delay in the
software, the repetition time was set to 0 ms. As
expected, the overhead values are similar for the HY-
SCORE and ENDOR experiments and decrease with
increasing of processor speed. The second row of the
table contains data for devices employing a GPIB (/0)
for communication. The transfer rate of commands
over GPIB (about 1 Mb/s) limits the performance of
the system. The performance of the HYSCORE ex-
periment, which requires significant reprogramming,
suffers especially. Modern high-speed pulse program-
mers and acquisition systems are built on different
versions of the PCI bus (/7). The PCI devices provide
significantly shorter reprogramming times. For exam-
ple, the spectrometer based on the PulseBlaster ESR
pulse programmer and the Acqiris DP-series digitizer
shows an excellent performance in HYSCORE exper-
iments (see Table 1, row 3). The programming delays
in this configuration are comparable with the compu-
tational ones. Using the special mode of the SpecMan
program, which fit the device programming into the

repetition time of the last shot, programming delays
can be decreased even further.

CONCLUSION

We have demonstrated that the SpecMan program is
well suited for modern pulse EPR experiments. It
delivers a low-cost, easy-to-maintain solution for de-
veloping new experiments and for conducting routine
applications. Simple interfacing and a front end free
of technical details decreases the learning time needed
to operate the spectrometer. The flexible kernel of the
program guarantees fast adaptation of the program to
all experimental needs. A number of special features,
such as random acquisition, real-time base line cor-
rection, elimination of erroneous accumulated traces,
and an auto-save option, give experimentalists unique
possibilities that were not available until now. Many
laboratories benefit already from the program. Spec-
Man is under continuous development. Planned im-
provements include multiple acquisitions during the
pulse sequence, programming of a whole experiment
at once for “intelligent” devices, and additional mod-
ules for real-time processing. Detailed help and a fully
functional demonstration version are available from
the official Web sites of the program (/2).

ACKNOWLEDGMENTS

We gratefully acknowledge those individuals who on
different stages of the project participated in program-
ming and discussions: Rene Tschagellar, Jurg Keller,

and Tatjana Rubinov. The ideas implemented in the
spectrometer control program of Jaap Shane [see ref.
(4)] had a significant influence on the SpecMan de-
sign.

REFERENCES

1. Debbins J, Gould K, Halleppanavar V, Polzin J, Radick
M, Sat G, Thomas D, Trevino S, Haworth R. 2002.
Novel software architecture for rapid development of
magnetic resonance applications. Concepts Magn Re-
son (Magn Reson Engineering) 15(3):216-237.

2. Borland Software Corporation. 2002. C++ builder.
Available at: http://www.borland.com/cbuilder/.

3. Donnelly C, Stallman R. Bison. 1995. The YACC-
compatible parser generator. Boston: Free Software
Foundation.

4. Shane JJ, Gromov I, Vega S, Goldfarb D. 1998. A
versatile pulsed X-band ENDOR spectrometer. Rev Sci
Instrum 69(9):3357-3364.

5. Gromov I, Krymov V, Manikandan P, Arieli D, Gold-

10.

11.
12.

SPECTROMETER MANAGER 45

farb D. 1999. A W-band pulsed ENDOR spectrometer:
setup and application to transition metal centers. J
Magn Reson 139:8-17.

. Schosseler P, Wacker TH, Schweiger A. 1994. Pulsed

ELDOR detected NMR. Chem Phys Lett 224:319-324.

. Epel B, Arieli D, Baute D, Goldfarb D. 2003. Improv-

ing W-band pulsed ENDOR sensitivity-random acqui-
sition and pulsed special TRIPLE. J Magn Res 164(1):
78-83.

. Hoefer P, Grupp A, Nebenfuehr H, Mehring M. 1986.

Hyperfine sublevel correlation (HYSCORE) spectros-
copy: a 2D ESR investigation of the squaric acid rad-
ical. Chem Phys Lett 132:279-282.

. Davies ER. 1974. New pulse ENDOR technique. Phys

Lett A 47:1-2.

ANSI/IEEE Standard 488.1-1987, ANSI/IEEE Stan-
dard 488.2-1992

IEEE Standard P1386.1

SpecMan: the shell for pulse EPR experiments. 2004.
Available at: http://www.esr.ethz.ch/specman/recent/
sm_main.html, http://www.geocities.com/boep777/sm_
main.html.

